Nacher Jose C, Akutsu Tatsuya
Department of Information Science, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan.
Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, 611-0011, Japan.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012826. doi: 10.1103/PhysRevE.91.012826. Epub 2015 Jan 30.
Robust control theory has been successfully applied to numerous real-world problems using a small set of devices called controllers. However, the real systems represented by networks contain unreliable components and modern robust control engineering has not addressed the problem of structural changes on complex networks including scale-free topologies. Here, we introduce the concept of structurally robust control of complex networks and provide a concrete example using an algorithmic framework that is widely applied in engineering. The developed analytical tools, computer simulations, and real network analyses lead herein to the discovery that robust control can be achieved in scale-free networks with exactly the same order of controllers required in a standard nonrobust configuration by adjusting only the minimum degree. The presented methodology also addresses the probabilistic failure of links in real systems, such as neural synaptic unreliability in Caenorhabditis elegans, and suggests a new direction to pursue in studies of complex networks in which control theory has a role.
鲁棒控制理论已通过一小部分称为控制器的设备成功应用于众多实际问题。然而,由网络表示的实际系统包含不可靠组件,并且现代鲁棒控制工程尚未解决包括无标度拓扑在内的复杂网络上的结构变化问题。在此,我们引入复杂网络结构鲁棒控制的概念,并使用一个在工程中广泛应用的算法框架提供一个具体示例。本文所开发的分析工具、计算机模拟和实际网络分析导致发现,通过仅调整最小度,在无标度网络中可以实现鲁棒控制,所需控制器数量与标准非鲁棒配置中所需的数量完全相同。所提出的方法还解决了实际系统中链路的概率性故障,例如秀丽隐杆线虫中的神经突触不可靠性,并为控制理论起作用的复杂网络研究提出了一个新的研究方向。