Suppr超能文献

微小RNA在金属致癌物诱导的细胞恶性转化和肿瘤发生中的作用。

The role of microRNAs in metal carcinogen-induced cell malignant transformation and tumorigenesis.

作者信息

Humphries Brock, Wang Zhishan, Yang Chengfeng

机构信息

Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; Cellular and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI 48824, USA.

Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.

出版信息

Food Chem Toxicol. 2016 Dec;98(Pt A):58-65. doi: 10.1016/j.fct.2016.02.012. Epub 2016 Feb 20.

Abstract

MicroRNAs (miRNAs), an important component of epigenetic mechanisms of carcinogenesis, have been shown to play crucial roles in cancer initiation, metastasis, prognosis and responses to drug treatment and may serve as biomarkers for early diagnosis of cancer and tools for cancer therapy. Metal carcinogens, such as arsenic, cadmium, hexavalent chromium and nickel, are well-established human carcinogens causing various cancers upon long term exposure. However, the mechanism of metal carcinogenesis has not been well understood, which limits our capability to effectively diagnose and treat human cancers resulting from chronic metal carcinogen exposure. Over recent years, the role of miRNAs in metal carcinogenesis has been actively explored and a growing body of evidence indicates the critical involvement of miRNAs in metal carcinogenesis. This review aims to discuss recent studies showing that miRNAs play important roles in metal carcinogen-induced cell malignant transformation and tumorigenesis. Some thoughts for future further studies in this field are also presented.

摘要

微小RNA(miRNA)是致癌作用表观遗传机制的重要组成部分,已被证明在癌症的发生、转移、预后以及对药物治疗的反应中发挥关键作用,并且可能作为癌症早期诊断的生物标志物和癌症治疗的工具。金属致癌物,如砷、镉、六价铬和镍,是公认的人类致癌物,长期接触会导致各种癌症。然而,金属致癌的机制尚未完全清楚,这限制了我们有效诊断和治疗因长期接触金属致癌物而导致的人类癌症的能力。近年来,人们积极探索了miRNA在金属致癌中的作用,越来越多的证据表明miRNA在金属致癌中起着关键作用。本综述旨在讨论最近的研究,这些研究表明miRNA在金属致癌物诱导的细胞恶性转化和肿瘤发生中发挥重要作用。本文还提出了该领域未来进一步研究的一些思路。

相似文献

1
The role of microRNAs in metal carcinogen-induced cell malignant transformation and tumorigenesis.
Food Chem Toxicol. 2016 Dec;98(Pt A):58-65. doi: 10.1016/j.fct.2016.02.012. Epub 2016 Feb 20.
2
Metal carcinogen exposure induces cancer stem cell-like property through epigenetic reprograming: A novel mechanism of metal carcinogenesis.
Semin Cancer Biol. 2019 Aug;57:95-104. doi: 10.1016/j.semcancer.2019.01.002. Epub 2019 Jan 11.
3
Dysregulations of long non-coding RNAs - The emerging "lnc" in environmental carcinogenesis.
Semin Cancer Biol. 2021 Nov;76:163-172. doi: 10.1016/j.semcancer.2021.03.029. Epub 2021 Apr 3.
4
Arsenic-Induced Carcinogenesis: The Impact of miRNA Dysregulation.
Toxicol Sci. 2018 Oct 1;165(2):284-290. doi: 10.1093/toxsci/kfy128.
5
MicroRNAs and their role in environmental chemical carcinogenesis.
Environ Geochem Health. 2019 Feb;41(1):225-247. doi: 10.1007/s10653-018-0179-8. Epub 2018 Aug 31.
7
Role of miR-31 and SATB2 in arsenic-induced malignant BEAS-2B cell transformation.
Mol Carcinog. 2018 Aug;57(8):968-977. doi: 10.1002/mc.22817. Epub 2018 Apr 17.
8
Dysregulation of microRNAs in metal-induced angiogenesis and carcinogenesis.
Semin Cancer Biol. 2021 Nov;76:279-286. doi: 10.1016/j.semcancer.2021.08.009. Epub 2021 Aug 21.
9
The Epitranscriptomic Mechanism of Metal Toxicity and Carcinogenesis.
Int J Mol Sci. 2022 Oct 5;23(19):11830. doi: 10.3390/ijms231911830.
10
Metals and molecular carcinogenesis.
Carcinogenesis. 2020 Sep 24;41(9):1161-1172. doi: 10.1093/carcin/bgaa076.

引用本文的文献

1
Blood lead levels and bladder cancer among US participants: NHANES 1999-2018.
BMC Public Health. 2025 Feb 2;25(1):416. doi: 10.1186/s12889-025-21549-2.
2
Dysregulation of Long Non-coding RNAs-the Novel lnc in Metal Toxicity and Carcinogenesis.
Curr Environ Health Rep. 2024 Dec 23;12(1):3. doi: 10.1007/s40572-024-00468-1.
3
Cadmium transport by mammalian ATP-binding cassette transporters.
Biometals. 2024 Jun;37(3):697-719. doi: 10.1007/s10534-024-00582-5. Epub 2024 Feb 6.
4
Epigenetic and epitranscriptomic mechanisms of chromium carcinogenesis.
Adv Pharmacol. 2023;96:241-265. doi: 10.1016/bs.apha.2022.07.002. Epub 2022 Aug 26.
7
The Epitranscriptomic Mechanism of Metal Toxicity and Carcinogenesis.
Int J Mol Sci. 2022 Oct 5;23(19):11830. doi: 10.3390/ijms231911830.
8
Nickel's Role in Pancreatic Ductal Adenocarcinoma: Potential Involvement of microRNAs.
Toxics. 2022 Mar 21;10(3):148. doi: 10.3390/toxics10030148.
10

本文引用的文献

1
Mitigation of arsenic-induced acquired cancer phenotype in prostate cancer stem cells by miR-143 restoration.
Toxicol Appl Pharmacol. 2016 Dec 1;312:11-18. doi: 10.1016/j.taap.2015.12.013. Epub 2015 Dec 22.
2
Oncogenic MicroRNAs: Key Players in Malignant Transformation.
Cancers (Basel). 2015 Dec 18;7(4):2466-85. doi: 10.3390/cancers7040904.
3
MicroRNAs and Endothelial (Dys) Function.
J Cell Physiol. 2016 Aug;231(8):1638-44. doi: 10.1002/jcp.25276. Epub 2015 Dec 30.
4
The role of microRNAs in the development and progression of chemical-associated cancers.
Toxicol Appl Pharmacol. 2016 Dec 1;312:3-10. doi: 10.1016/j.taap.2015.11.013. Epub 2015 Nov 24.
6
Causes of genome instability: the effect of low dose chemical exposures in modern society.
Carcinogenesis. 2015 Jun;36 Suppl 1(Suppl 1):S61-88. doi: 10.1093/carcin/bgv031.
8
MicroRNAs in apoptosis, autophagy and necroptosis.
Oncotarget. 2015 Apr 20;6(11):8474-90. doi: 10.18632/oncotarget.3523.
9
Competing endogenous RNA networks: tying the essential knots for cancer biology and therapeutics.
J Hematol Oncol. 2015 Mar 28;8:30. doi: 10.1186/s13045-015-0129-1.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验