Catela Catarina, Shin Maggie M, Lee David H, Liu Jeh-Ping, Dasen Jeremy S
Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
Cell Rep. 2016 Mar 1;14(8):1901-15. doi: 10.1016/j.celrep.2016.01.067. Epub 2016 Feb 18.
The accuracy of neural circuit assembly relies on the precise spatial and temporal control of synaptic specificity determinants during development. Hox transcription factors govern key aspects of motor neuron (MN) differentiation; however, the terminal effectors of their actions are largely unknown. We show that Hox/Hox cofactor interactions coordinate MN subtype diversification and connectivity through Ret/Gfrα receptor genes. Hox and Meis proteins determine the levels of Ret in MNs and define the intrasegmental profiles of Gfrα1 and Gfrα3 expression. Loss of Ret or Gfrα3 leads to MN specification and innervation defects similar to those observed in Hox mutants, while expression of Ret and Gfrα1 can bypass the requirement for Hox genes during MN pool differentiation. These studies indicate that Hox proteins contribute to neuronal fate and muscle connectivity through controlling the levels and pattern of cell surface receptor expression, consequently gating the ability of MNs to respond to limb-derived instructive cues.
神经回路组装的准确性依赖于发育过程中突触特异性决定因素在空间和时间上的精确控制。Hox转录因子调控运动神经元(MN)分化的关键方面;然而,其作用的终效应器在很大程度上尚不清楚。我们发现,Hox/Hox辅因子相互作用通过Ret/Gfrα受体基因协调MN亚型的多样化和连接性。Hox和Meis蛋白决定MN中Ret的水平,并确定Gfrα1和Gfrα3表达的节段内分布。Ret或Gfrα3的缺失会导致MN规格和神经支配缺陷,类似于在Hox突变体中观察到的情况,而Ret和Gfrα1的表达可以在MN池分化过程中绕过对Hox基因的需求。这些研究表明,Hox蛋白通过控制细胞表面受体表达的水平和模式来影响神经元命运和肌肉连接性,从而决定MN对肢体衍生的指导性信号作出反应的能力。