Suppr超能文献

预测住院患者产超广谱β-内酰胺酶大肠埃希菌感染的临床风险评分系统

Clinical risk scoring system for predicting extended-spectrum β-lactamase-producing Escherichia coli infection in hospitalized patients.

作者信息

Kengkla K, Charoensuk N, Chaichana M, Puangjan S, Rattanapornsompong T, Choorassamee J, Wilairat P, Saokaew S

机构信息

School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand.

School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand.

出版信息

J Hosp Infect. 2016 May;93(1):49-56. doi: 10.1016/j.jhin.2016.01.007. Epub 2016 Jan 28.

Abstract

BACKGROUND

Extended spectrum β-lactamase-producing Escherichia coli (ESBL-EC) has important implications for infection control and empiric antibiotic prescribing. This study aims to develop a risk scoring system for predicting ESBL-EC infection based on local epidemiology.

METHODS

The study retrospectively collected eligible patients with a positive culture for E. coli during 2011 to 2014. The risk scoring system was developed using variables independently associated with ESBL-EC infection through logistic regression-based prediction. Area under the receiver-operator characteristic curve (AuROC) was determined to confirm the prediction power of the model.

FINDINGS

Predictors for ESBL-EC infection were male gender [odds ratio (OR): 1.53], age ≥55 years (OR: 1.50), healthcare-associated infection (OR: 3.21), hospital-acquired infection (OR: 2.28), sepsis (OR: 1.79), prolonged hospitalization (OR: 1.88), history of ESBL infection within one year (OR: 7.88), prior use of broad-spectrum cephalosporins within three months (OR: 12.92), and prior use of other antibiotics within three months (OR: 2.14). Points scored ranged from 0 to 47, and were divided into three groups based on diagnostic performance parameters: low risk (score: 0-8; 44.57%), moderate risk (score: 9-11; 21.85%) and high risk (score: ≥12; 33.58%). The model displayed moderate power of prediction (AuROC: 0.773; 95% confidence interval: 0.742-0.805) and good calibration (Hosmer-Lemeshow χ(2) = 13.29; P = 0.065).

CONCLUSION

This tool may optimize the prescribing of empirical antibiotic therapy, minimize time to identify patients, and prevent spreading of ESBL-EC. Prior to adoption into routine clinical practice, further validation study of the tool is needed.

摘要

背景

产超广谱β-内酰胺酶大肠埃希菌(ESBL-EC)对感染控制和经验性抗生素处方具有重要意义。本研究旨在基于当地流行病学情况开发一种预测ESBL-EC感染的风险评分系统。

方法

该研究回顾性收集了2011年至2014年期间大肠埃希菌培养阳性的合格患者。通过基于逻辑回归的预测,使用与ESBL-EC感染独立相关的变量来开发风险评分系统。确定受试者工作特征曲线下面积(AuROC)以确认模型的预测能力。

结果

ESBL-EC感染的预测因素包括男性[比值比(OR):1.53]、年龄≥55岁(OR:1.50)、医疗保健相关感染(OR:3.21)、医院获得性感染(OR:2.28)、脓毒症(OR:1.79)、住院时间延长(OR:1.88)、一年内有ESBL感染史(OR:7.88)、三个月内曾使用广谱头孢菌素(OR:12.92)以及三个月内曾使用其他抗生素(OR:2.14)。得分范围为0至47分,并根据诊断性能参数分为三组:低风险(得分:0 - 8分;44.57%)、中度风险(得分:9 - 11分;21.85%)和高风险(得分:≥12分;33.58%)。该模型显示出中等预测能力(AuROC:0.773;95%置信区间:0.742 - 0.805)和良好的校准度(Hosmer-Lemeshow χ(2)=13.29;P = 0.065)。

结论

该工具可优化经验性抗生素治疗的处方,减少识别患者的时间,并防止ESBL-EC的传播。在将其应用于常规临床实践之前,需要对该工具进行进一步的验证研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验