Oonsivilai Mathupanee, Mo Yin, Luangasanatip Nantasit, Lubell Yoel, Miliya Thyl, Tan Pisey, Loeuk Lorn, Turner Paul, Cooper Ben S
Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
Division of Infectious Disease, University Medicine Cluster, National University Hospital, Singapore, Singapore.
Wellcome Open Res. 2018 Oct 10;3:131. doi: 10.12688/wellcomeopenres.14847.1. eCollection 2018.
: Early and appropriate empiric antibiotic treatment of patients suspected of having sepsis is associated with reduced mortality. The increasing prevalence of antimicrobial resistance reduces the efficacy of empiric therapy guidelines derived from population data. This problem is particularly severe for children in developing country settings. We hypothesized that by applying machine learning approaches to readily collect patient data, it would be possible to obtain individualized predictions for targeted empiric antibiotic choices. : We analysed blood culture data collected from a 100-bed children's hospital in North-West Cambodia between February 2013 and January 2016. Clinical, demographic and living condition information was captured with 35 independent variables. Using these variables, we used a suite of machine learning algorithms to predict Gram stains and whether bacterial pathogens could be treated with common empiric antibiotic regimens: i) ampicillin and gentamicin; ii) ceftriaxone; iii) none of the above. 243 patients with bloodstream infections were available for analysis. We found that the random forest method had the best predictive performance overall as assessed by the area under the receiver operating characteristic curve (AUC). The random forest method gave an AUC of 0.80 (95%CI 0.66-0.94) for predicting susceptibility to ceftriaxone, 0.74 (0.59-0.89) for susceptibility to ampicillin and gentamicin, 0.85 (0.70-1.00) for susceptibility to neither, and 0.71 (0.57-0.86) for Gram stain result. Most important variables for predicting susceptibility were time from admission to blood culture, patient age, hospital versus community-acquired infection, and age-adjusted weight score. : Applying machine learning algorithms to patient data that are readily available even in resource-limited hospital settings can provide highly informative predictions on antibiotic susceptibilities to guide appropriate empiric antibiotic therapy. When used as a decision support tool, such approaches have the potential to improve targeting of empiric therapy, patient outcomes and reduce the burden of antimicrobial resistance.
对疑似患有脓毒症的患者进行早期且恰当的经验性抗生素治疗与降低死亡率相关。抗菌药物耐药性的日益普遍降低了源自人群数据的经验性治疗指南的疗效。这个问题在发展中国家环境中的儿童中尤为严重。我们假设,通过应用机器学习方法来轻松收集患者数据,有可能获得针对目标经验性抗生素选择的个性化预测。
我们分析了2013年2月至2016年1月期间从柬埔寨西北部一家拥有100张床位的儿童医院收集的血培养数据。用35个独立变量记录了临床、人口统计学和生活状况信息。利用这些变量,我们使用了一套机器学习算法来预测革兰氏染色以及细菌病原体是否可用常见的经验性抗生素方案治疗:i)氨苄西林和庆大霉素;ii)头孢曲松;iii)以上都不用。243例血流感染患者可供分析。我们发现,根据受试者操作特征曲线(AUC)下的面积评估,随机森林方法总体上具有最佳预测性能。随机森林方法预测对头孢曲松敏感性的AUC为0.80(95%CI 0.66 - 0.94),对氨苄西林和庆大霉素敏感性的AUC为0.74(0.59 - 0.89),对两者都不敏感的AUC为0.85(0.70 - 1.00),对革兰氏染色结果的AUC为0.71(0.57 - 0.86)。预测敏感性的最重要变量是从入院到血培养的时间、患者年龄、医院获得性感染与社区获得性感染以及年龄校正体重评分。
将机器学习算法应用于即使在资源有限的医院环境中也容易获得的患者数据,可以提供关于抗生素敏感性的高度信息性预测,以指导恰当的经验性抗生素治疗。当用作决策支持工具时,此类方法有可能改善经验性治疗的针对性、患者预后并减轻抗菌药物耐药性负担。