Suppr超能文献

通过表面台阶修饰制备单原子铂-二氧化铈催化剂。

Creating single-atom Pt-ceria catalysts by surface step decoration.

作者信息

Dvořák Filip, Farnesi Camellone Matteo, Tovt Andrii, Tran Nguyen-Dung, Negreiros Fabio R, Vorokhta Mykhailo, Skála Tomáš, Matolínová Iva, Mysliveček Josef, Matolín Vladimír, Fabris Stefano

机构信息

Charles University in Prague, Faculty of Mathematics and Physics, V Holešovičkách 2, Prague 18000, Czech Republic.

CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Via Bonomea 265, Trieste 34136, Italy.

出版信息

Nat Commun. 2016 Feb 24;7:10801. doi: 10.1038/ncomms10801.

Abstract

Single-atom catalysts maximize the utilization of supported precious metals by exposing every single metal atom to reactants. To avoid sintering and deactivation at realistic reaction conditions, single metal atoms are stabilized by specific adsorption sites on catalyst substrates. Here we show by combining photoelectron spectroscopy, scanning tunnelling microscopy and density functional theory calculations that Pt single atoms on ceria are stabilized by the most ubiquitous defects on solid surfaces--monoatomic step edges. Pt segregation at steps leads to stable dispersions of single Pt(2+) ions in planar PtO4 moieties incorporating excess O atoms and contributing to oxygen storage capacity of ceria. We experimentally control the step density on our samples, to maximize the coverage of monodispersed Pt(2+) and demonstrate that step engineering and step decoration represent effective strategies for understanding and design of new single-atom catalysts.

摘要

单原子催化剂通过使每一个金属原子都暴露于反应物中,从而最大限度地提高了负载型贵金属的利用率。为了避免在实际反应条件下烧结和失活,单金属原子通过催化剂载体上的特定吸附位点得以稳定。在此,我们通过结合光电子能谱、扫描隧道显微镜和密度泛函理论计算表明,二氧化铈上的铂单原子是由固体表面最普遍存在的缺陷——单原子台阶边缘所稳定的。台阶处的铂偏析导致单个Pt(2+)离子在包含过量氧原子并有助于二氧化铈储氧能力的平面PtO4部分中稳定分散。我们通过实验控制样品上的台阶密度,以最大化单分散Pt(2+)的覆盖率,并证明台阶工程和台阶修饰是理解和设计新型单原子催化剂的有效策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3663/4770085/c4a3821db924/ncomms10801-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验