Suppr超能文献

通过知觉学习锐化从粗到细的立体视觉:跨空间频率谱的不对称迁移。

Sharpening coarse-to-fine stereo vision by perceptual learning: asymmetric transfer across the spatial frequency spectrum.

作者信息

Li Roger W, Tran Truyet T, Craven Ashley P, Leung Tsz-Wing, Chat Sandy W, Levi Dennis M

机构信息

School of Optometry, University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA.

School of Optometry , University of California , Berkeley, CA 94720, USA.

出版信息

R Soc Open Sci. 2016 Jan 20;3(1):150523. doi: 10.1098/rsos.150523. eCollection 2016 Jan.

Abstract

Neurons in the early visual cortex are finely tuned to different low-level visual features, forming a multi-channel system analysing the visual image formed on the retina in a parallel manner. However, little is known about the potential 'cross-talk' among these channels. Here, we systematically investigated whether stereoacuity, over a large range of target spatial frequencies, can be enhanced by perceptual learning. Using narrow-band visual stimuli, we found that practice with coarse (low spatial frequency) targets substantially improves performance, and that the improvement spreads from coarse to fine (high spatial frequency) three-dimensional perception, generalizing broadly across untrained spatial frequencies and orientations. Notably, we observed an asymmetric transfer of learning across the spatial frequency spectrum. The bandwidth of transfer was broader when training was at a high spatial frequency than at a low spatial frequency. Stereoacuity training is most beneficial when trained with fine targets. This broad transfer of stereoacuity learning contrasts with the highly specific learning reported for other basic visual functions. We also revealed strategies to boost learning outcomes 'beyond-the-plateau'. Our investigations contribute to understanding the functional properties of the network subserving stereovision. The ability to generalize may provide a key principle for restoring impaired binocular vision in clinical situations.

摘要

早期视觉皮层中的神经元对不同的低层次视觉特征进行了精细调谐,形成了一个多通道系统,以并行方式分析在视网膜上形成的视觉图像。然而,对于这些通道之间潜在的“串扰”却知之甚少。在这里,我们系统地研究了在大范围的目标空间频率上,立体视敏度是否可以通过知觉学习得到提高。使用窄带视觉刺激,我们发现对粗糙(低空间频率)目标的练习能显著提高表现,并且这种提高会从粗糙的三维感知扩展到精细(高空间频率)的三维感知,广泛推广到未训练的空间频率和方向。值得注意的是,我们观察到学习在空间频率谱上的不对称转移。当训练处于高空间频率时,转移的带宽比处于低空间频率时更宽。用精细目标进行训练时,立体视敏度训练最为有益。这种立体视敏度学习的广泛转移与其他基本视觉功能所报道的高度特异性学习形成对比。我们还揭示了“突破高原期”提高学习成果的策略。我们的研究有助于理解支持立体视觉的网络的功能特性。这种泛化能力可能为临床情况下恢复受损的双眼视觉提供一个关键原则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/605d/4736933/646dfde0efcf/rsos150523-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验