Suppr超能文献

纤溶酶原激活物抑制剂-1对组织型纤溶酶原激活物特异性抑制的结构基础

Structural basis of specific inhibition of tissue-type plasminogen activator by plasminogen activators inhibitor-1.

作者信息

Gong Lihu, Liu Min, Zeng Tu, Shi Xiaoli, Yuan Cai, Andreasen Peter A, Huang Mingdong

机构信息

State Key Laboratory of Structural Chemistry, Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China.

State Key Laboratory of Structural Chemistry, Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

出版信息

Data Brief. 2016 Jan 6;6:550-5. doi: 10.1016/j.dib.2015.12.050. eCollection 2016 Mar.

Abstract

Thrombosis is a leading cause of death worldwide [1]. Recombinant tissue-type plasminogen activator (tPA) is the FDA-approved thrombolytic drug for ischemic strokes, myocardial infarction and pulmonary embolism. tPA is a multi-domain serine protease of the trypsin-family [2] and catalyses the critical step in fibrinolysis [3], converting the zymogen plasminogen to the active serine protease plasmin, which degrades the fibrin network of thrombi and blood clots. tPA is rapidly inactivated by endogenous plasminogen activators inhibitor-1 (PAI-1) [4] (Fig. 1). Engineering on tPA to reduce its inhibition by PAI-1 without compromising its thrombolytic effect is a continuous effort [5]. Tenecteplase (TNK-tPA) is a newer generation of tPA variant showing slower inhibition by PAI-1 [6]. Extensive studies to understand the molecular interactions between tPA and PAI-1 have been carried out [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], however, the precise details at atomic resolution remain unknown. We report the crystal structure of tPA·PAI-1 complex here. The methods required to achieve these data include: (1) recombinant expression and purification of a PAI-1 variant (14-1B) containing four mutations (N150H, K154T, Q319L, and M354I), and a tPA serine protease domain (tPA-SPD) variant with three mutations (C122A, N173Q, and S195A, in the chymotrypsin numbering) [19]; (2) formation of a tPA-SPD·PAI-1 Michaëlis complex in vitro [19]; and (3) solving the three-dimensional structure for this complex by X-ray crystallography [deposited in the PDB database as 5BRR]. The data explain the specificity of PAI-1 for tPA and uPA [19], [20], and provide structural basis to design newer generation of PAI-1-resistant tPA variants as thrombolytic agents [19].

摘要

血栓形成是全球范围内主要的死亡原因之一[1]。重组组织型纤溶酶原激活剂(tPA)是美国食品药品监督管理局(FDA)批准用于缺血性中风、心肌梗死和肺栓塞的溶栓药物。tPA是胰蛋白酶家族的一种多结构域丝氨酸蛋白酶[2],催化纤维蛋白溶解过程中的关键步骤[3],将纤溶酶原激活为活性丝氨酸蛋白酶纤溶酶,后者降解血栓和血凝块的纤维蛋白网络。tPA会被内源性纤溶酶原激活剂抑制剂-1(PAI-1)迅速灭活[4](图1)。对tPA进行改造以降低其被PAI-1抑制的程度同时又不影响其溶栓效果,这是一项持续进行的工作[5]。替奈普酶(TNK-tPA)是新一代的tPA变体,对PAI-1的抑制作用较慢[6]。人们已经开展了大量研究来了解tPA与PAI-1之间的分子相互作用[7,8,9,10,11,12,13,14,15,16,17,18],然而,原子分辨率下的精确细节仍不清楚。我们在此报告tPA·PAI-1复合物的晶体结构。获得这些数据所需的方法包括:(1)重组表达并纯化一种含有四个突变(N150H、K154T、Q319L和M354I)的PAI-1变体(14-1B),以及一种含有三个突变(按照胰凝乳蛋白酶编号为C122A、N173Q和S195A)的tPA丝氨酸蛋白酶结构域(tPA-SPD)变体[19];(2)在体外形成tPA-SPD·PAI-1米氏复合物[19];(3)通过X射线晶体学解析该复合物的三维结构[已作为5BRR存入蛋白质数据库(PDB)]。这些数据解释了PAI-1对tPA和尿激酶型纤溶酶原激活剂(uPA)的特异性[19,20],并为设计新一代抗PAI-1的tPA变体作为溶栓剂提供了结构基础[19]。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a38f/4731420/090372672f37/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验