Suppr超能文献

通过¹⁵N反向检测异核核磁共振波谱研究蛋白质的主链动力学:在葡萄球菌核酸酶中的应用。

Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease.

作者信息

Kay L E, Torchia D A, Bax A

机构信息

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892.

出版信息

Biochemistry. 1989 Nov 14;28(23):8972-9. doi: 10.1021/bi00449a003.

Abstract

This paper describes the use of novel two-dimensional nuclear magnetic resonance (NMR) pulse sequences to provide insight into protein dynamics. The sequences developed permit the measurement of the relaxation properties of individual nuclei in macromolecules, thereby providing a powerful experimental approach to the study of local protein mobility. For isotopically labeled macromolecules, the sequences enable measurements of heteronuclear nuclear Overhauser effects (NOE) and spin-lattice (T1) and spin-spin (T2) 15N or 13C relaxation times with a sensitivity similar to those of many homonuclear 1H experiments. Because T1 values and heteronuclear NOEs are sensitive to high-frequency motions (10(8)-10(12) s-1) while T2 values are also a function of much slower processes, it is possible to explore dynamic events occurring over a large time scale. We have applied these techniques to investigate the backbone dynamics of the protein staphylococcal nuclease (S. Nase) complexed with thymidine 3',5'-bisphosphate (pdTp) and Ca2+ and labeled uniformly with 15N. T1, T2, and NOE values were obtained for over 100 assigned backbone amide nitrogens in the protein. Values of the order parameter (S), characterizing the extent of rapid 1H-15N bond motions, have been determined. These results suggest that there is no correlation between these rapid small amplitude motions and secondary structure for S. Nase. In contrast, 15N line widths suggest a possible correlation between secondary structure and motions on the millisecond time scale. In particular, the loop region between residues 42 and 56 appears to be considerably more flexible on this slow time scale than the rest of the protein.

摘要

本文描述了使用新型二维核磁共振(NMR)脉冲序列来深入了解蛋白质动力学。所开发的序列能够测量大分子中单个原子核的弛豫特性,从而为研究局部蛋白质流动性提供了一种强大的实验方法。对于同位素标记的大分子,这些序列能够测量异核核Overhauser效应(NOE)以及自旋晶格(T1)和自旋 - 自旋(T2)的15N或13C弛豫时间,其灵敏度与许多同核1H实验相似。由于T1值和异核NOE对高频运动(10(8)-10(12) s-1)敏感,而T2值也是更慢过程的函数,因此有可能探索在大时间尺度上发生的动态事件。我们已应用这些技术来研究与胸苷3',5'-双磷酸(pdTp)和Ca2+复合且均匀标记有15N的葡萄球菌核酸酶(S. Nase)蛋白质的主链动力学。获得了该蛋白质中100多个已指定主链酰胺氮的T1、T2和NOE值。已确定了表征快速1H-15N键运动程度的序参数(S)值。这些结果表明,对于S. Nase,这些快速小幅度运动与二级结构之间不存在相关性。相比之下,15N线宽表明二级结构与毫秒时间尺度上的运动之间可能存在相关性。特别是,残基42和56之间的环区域在这个慢时间尺度上似乎比蛋白质的其余部分更具柔性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验