Suppr超能文献

利用基因组分析在多发性骨髓瘤常规诊断中鉴定具有预后相关性的染色体异常

Identification of Prognostically Relevant Chromosomal Abnormalities in Routine Diagnostics of Multiple Myeloma Using Genomic Profiling.

作者信息

Kjeldsen Eigil

机构信息

Haemodiagnostic Laboratory, Cancer Cytogenetics Section, Department of Haematology, Aarhus University Hospital, Aarhus, Denmark

出版信息

Cancer Genomics Proteomics. 2016 Mar-Apr;13(2):91-127.

Abstract

BACKGROUND

The combination of serum β2-microglubulin and albumin levels is highly prognostic in multiple myeloma (MM), defined as the International Staging System (ISS). Recurrent genomic abnormalities present in myeloma cells also have a strong prognostic power. This study aimed to assess, in a routine diagnostic setting, whether genomic aberrations can be used to identify sub-groups in ISS staging, as this system does not incorporate intrinsic myeloma cell variability at the molecular level.

MATERIALS AND METHODS

A prospective population-based study of 123 patients newly diagnosed with MM with ISS staging were included for karyotyping, interphase nuclei fluorescence in situ hybridization (iFISH) and oligo-based array comparative genomic hybridization (oaCGH) analyses.

RESULTS

Clonal abnormalities were identified in 27% of analyses by karyotyping, in 83% by iFISH, and in 99% by oaCGH analysis. ISS staging combined with oaCGH aberrations identified ISS sub-groups.

CONCLUSION

oaCGH analysis is a valuable asset in detecting prognostically relevant genomic abnormalities. The combination of oaCGH data with ISS staging might help define new sub-groups in MM.

摘要

背景

血清β2-微球蛋白和白蛋白水平的联合在多发性骨髓瘤(MM)中具有高度预后价值,这被定义为国际分期系统(ISS)。骨髓瘤细胞中存在的复发性基因组异常也具有很强的预后能力。本研究旨在评估在常规诊断环境下,基因组畸变是否可用于识别ISS分期中的亚组,因为该系统未纳入骨髓瘤细胞在分子水平上的内在变异性。

材料与方法

一项基于人群的前瞻性研究纳入了123例新诊断为MM且已进行ISS分期的患者,进行核型分析、间期核荧光原位杂交(iFISH)和基于寡核苷酸的阵列比较基因组杂交(oaCGH)分析。

结果

通过核型分析在27%的分析中鉴定出克隆性异常,通过iFISH在83%的分析中鉴定出克隆性异常,通过oaCGH分析在99%的分析中鉴定出克隆性异常。ISS分期与oaCGH畸变相结合可识别ISS亚组。

结论

oaCGH分析在检测与预后相关的基因组异常方面是一项有价值的工具。oaCGH数据与ISS分期相结合可能有助于定义MM中的新亚组。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验