Suppr超能文献

线粒体与钙释放单位的关联受年龄和肌肉活动的控制。

Mitochondria Association to Calcium Release Units is Controlled by Age and Muscle Activity.

作者信息

Protasi Feliciano

机构信息

CeSI - Center for Research on Ageing & DNICS - Dept. of Neuroscience, Imaging, and Clinical Sciences, Univ. G. d'Annunzio of Chieti , I-66013 Italy.

出版信息

Eur J Transl Myol. 2015 Oct 27;25(4):257-62. doi: 10.4081/ejtm.2015.5604. eCollection 2015 Aug 24.

Abstract

BACKGROUND

At the most basic level, skeletal muscle contraction requires Ca(2+) and ATP and, thus, is under direct control of two important intracellular organelles: Ca(2+) release units (CRUs) - specialized intracellular junctions, also named triads, which are involved in excitation-contraction (EC) coupling - and mitochondria, the organelles deputed to produce the energy required for most cellular functions (i.e. aerobic ATP production). It is now becoming clear that: a) CRUs and mitochondria interact functionally and structurally, as entry of Ca(2+) into the mitochondrial matrix is required to stimulate the respiratory chain, and increase production of ATP (Fig. 1) (Sembrowich et al. 1985 (1); Brookes et al. 2004 (2); Rossi et al. 2009) (3); b) we recently discovered that, in adult skeletal muscle fibers, mitochondria and CRUs are placed in close proximity to each other (Fig. 2) and structurally linked by small strands called tethers (Fig. 3) (Boncompagni et al. 2009)(4).

SCIENTIFIC HYPOTHESIS OF THE STUDY

Miss-function of mitochondria and functional/structural changes affecting the EC coupling apparatus have been both proposed to contribute to the age-related decline of skeletal muscle performance (Delbono et al. 1995 (5); Boncompagni et al. 2006 (6)). In this study, we tested the following hypothesis: muscle activity improves/maintains the correct association between CRUs and mitochondria, which is challenged by ageing and inactivity.

EXPERIMENTAL PLAN

We have studied the morphology, frequency, and sarcomericlocalization of both CRUs and mitochondria using light, confocal, and electron microscopy (EM) in: a) Extensor Digitorum Longus (EDL) muscles from adult (3-12 months of age) and ageing (≥24 months of age) wild type (WT) mice; and b) in human biopsies from sedentary elderly subjects (70 ± 5 years) and age matched sportmen (69 ± 4 years of age) to determine how EC coupling and mitochondrial apparatuses are affected by age and exercise.

RESULTS A

Studies in mice revealed that: a) the number of CRUs/100µm(2) (measured in longitudinal EM sections) in aging mice decreases significantly compared to adult mice: 87.4 ± 30.3 vs. 74.1 ± 25.1, respectively (p<0.01); b) the number of mitochondria-profiles/100µm(2) also decreases with age: 52.9 ± 23.5 vs. 42.8 ± 21.0, respectively (p<0.01); c) in ageing fibers mitochondria are more frequently found at the A band of the sarcomere (5.9 ± 3.3 vs. 1.5 ± 5.3), i.e. away from CRUs. The miss-placement of mitochondria is likely the results of the decreased frequency of tethers: in ageing fibers their number decreased with age from 14/100µm(2) in adult vs. 6/100µm(2) in ageing mice. The above changes taken together caused a significant decrease in the number CRUs-mitochondria couples/100µm(2): 37.4 ± 17.4 vs. 27.0 ± 15.8 (a decrease of ~27%). This reduction of CRU/mitochondria couples may significantly contribute to the decrease of specific force and endurance of skeletal muscle associated to ageing. A manuscript containing these data was recently submitted for publication (Pietrangelo & D'Incecco et al. submitted). In order to determine if the structural changes described above are caused by ageing itself or if inactivity plays also a central role in the progressive decay of EC coupling and mitochondrial apparatuses, we also studied mice that had access to running wheels for the second part of their lives (from 1 to 2 years of age). Results collected from these (unpublished) findings indicated that exercise improves number of mitochondria (a), their position with respect to sarcomeric striation (b), and their association to CRUs (c): a) number of mitochondria: 49.3 ± 19.8* / 100µm(2); b) number of mitochondria at the A band: 2.0 ± 4.2* / 100µm(2); number of CRUs-mitochondria couples: 35.0 ± 16.8* / 100µm(2). Please compare these data with results from sedentary mice reported above (differences were all highly significant: *p<0.01).

RESULTS B

Studies in human Vastus Lateralis biopsies from sedentary elderly subjects confirmed general findings collected in mice (i.e. decrease in frequency of both CRUs and mitochondria and partial miss-placement of mitochondria). In human studies (see Figure 4), we compared samples from two groups of elderly individuals (all males): sedentary subjects (70 ± 5 years) or sportmen (69 ± 4 years of age), i.e. individuals who regularly exercised in the last several years of their lives. These studies revealed that both CRUs and mitochondria increase with exercise, mitochondria more than CRUs. Number of CRUs / 100µm(2): 20.3 ± 10.0 in sedentary vs. 21.6 ± 10.8 in sportsmen; number of mitochondria / 100µm(2): 37.1 ± 18.3 in sedentary vs. 52.0 ± 21.3 in sportsmen. The combined increase of both CRUs and mitochondria resulted in largely increased frequency of CRU/mitochondria pairs / 100µm(2): 5.9 ± 5.5 in sedentary vs. 11.1 ± 8.3 in sportsmen. These studies have been recently published in a larger study including, beside the just described EM analysis, also functional and histological data (Zampieri et al. 2015)7.

DISCUSSION AND PERSPECTIVES

The results collected in our studies suggest that structure/organization of both EC coupling and mitochondrial apparatus: a) is affected by age; b) is better preserved by exercise. In conclusion, the dramatic age-related decay affecting mitochondrial and EC coupling apparatuses in skeletal muscle of mice and humans are, at least in part, caused by inactivity due to changes in life style.

摘要

背景

在最基本的层面上,骨骼肌收缩需要钙离子(Ca²⁺)和三磷酸腺苷(ATP),因此,它直接受两个重要细胞内细胞器的控制:钙离子释放单元(CRUs)——一种特殊的细胞内连接结构,也称为三联体,参与兴奋 - 收缩(EC)偶联——以及线粒体,该细胞器负责产生大多数细胞功能所需的能量(即有氧ATP生成)。现在越来越清楚的是:a)CRUs和线粒体在功能和结构上相互作用,因为钙离子进入线粒体基质是刺激呼吸链并增加ATP生成所必需的(图1)(Sembrowich等人,1985年(1);Brookes等人,2004年(2);Rossi等人,2009年)(3);b)我们最近发现,在成年骨骼肌纤维中,线粒体和CRUs彼此紧邻(图2),并通过称为系链的小链在结构上相连(图3)(Boncompagni等人,2009年)(4)。

该研究的科学假设

线粒体功能异常以及影响EC偶联装置的功能/结构变化都被认为与骨骼肌性能的年龄相关下降有关(Delbono等人,1995年(5);Boncompagni等人,2006年(6))。在本研究中,我们测试了以下假设:肌肉活动可改善/维持CRUs与线粒体之间的正确关联,而衰老和缺乏活动会对这种关联构成挑战。

实验方案

我们使用光学显微镜、共聚焦显微镜和电子显微镜(EM)研究了CRUs和线粒体的形态、频率以及在肌节中的定位,研究对象包括:a)成年(3 - 12个月龄)和衰老(≥24个月龄)野生型(WT)小鼠的趾长伸肌(EDL);b)久坐不动的老年受试者(70±5岁)和年龄匹配的运动员(69±4岁)的人体活检组织,以确定年龄和运动如何影响EC偶联和线粒体装置。

结果A:对小鼠的研究表明:a)衰老小鼠中每100μm²的CRUs数量(在纵向EM切片中测量)与成年小鼠相比显著减少:分别为87.4±30.3和74.1±25.1(p<0.01);b)每100μm²的线粒体轮廓数量也随年龄减少:分别为52.9±23.5和42.8±21.0(p<0.01);c)在衰老纤维中,线粒体更频繁地出现在肌节的A带(5.9±3.3对1.5±5.3),即远离CRUs。线粒体位置错误可能是系链频率降低的结果:在衰老纤维中,其数量随年龄从成年小鼠的14/100μm²减少到衰老小鼠的6/100μm²。上述变化共同导致每100μm²的CRUs - 线粒体对数量显著减少:37.4±17.4对27.0±15.8(减少约27%)。CRU/线粒体对的这种减少可能显著导致与衰老相关的骨骼肌比肌力和耐力下降。一篇包含这些数据的手稿最近已提交发表(Pietrangelo和D'Incecco等人,已提交)。为了确定上述结构变化是由衰老本身引起的,还是缺乏活动在EC偶联和线粒体装置的逐渐衰退中也起核心作用,我们还研究了在生命的第二阶段(1至2岁)可以使用跑步轮的小鼠。从这些(未发表的)研究结果中收集的数据表明,运动改善了线粒体数量(a)、它们相对于肌节条纹的位置(b)以及它们与CRUs的关联(c):a)线粒体数量:49.3±19.8* / 100μm²;b)A带处的线粒体数量:2.0±4.2* / 100μm²;CRUs - 线粒体对数量:35.0±16.8* / 100μm²。请将这些数据与上述久坐小鼠的结果进行比较(差异均非常显著:*p<0.01)。

结果B:对久坐老年受试者的人体股外侧肌活检组织的研究证实了在小鼠中收集的一般发现(即CRUs和线粒体频率均降低以及线粒体部分位置错误)。在人体研究中(见图4),我们比较了两组老年男性个体的样本:久坐受试者(70±5岁)或运动员(69±4岁),即那些在生命的最后几年定期锻炼的个体。这些研究表明,CRUs和线粒体均随运动增加,线粒体增加的幅度大于CRUs。每100μm²的CRUs数量:久坐组为20.3±10.0,运动员组为21.6±10.8;每100μm²的线粒体数量:久坐组为37.1±18.3,运动员组为52.0±21.3。CRUs和线粒体的共同增加导致每100μm²的CRU/线粒体对频率大幅增加:久坐组为5.9±5.5,运动员组为11.1±8.3。这些研究最近已发表在一项更大的研究中,除了刚刚描述的EM分析外,还包括功能和组织学数据(Zampieri等人,2015年)(7)。

讨论与展望

我们研究中收集的结果表明,EC偶联和线粒体装置的结构/组织:a)受年龄影响;b)通过运动能更好地保存。总之,小鼠和人类骨骼肌中线粒体和EC偶联装置与年龄相关的显著衰退至少部分是由于生活方式改变导致的缺乏活动引起的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2f7/4748984/d08a06bfb9a3/ejtm-2015-4-5604-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验