Suppr超能文献

先验知识还是解释自由度?审视最近发表的“新型”锌结合位点分类

Prior knowledge or freedom of interpretation? A critical look at a recently published classification of "novel" Zn binding sites.

作者信息

Raczynska Joanna E, Wlodawer Alexander, Jaskolski Mariusz

机构信息

Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.

Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, Maryland, 21702.

出版信息

Proteins. 2016 Jun;84(6):770-6. doi: 10.1002/prot.25024. Epub 2016 Mar 10.

Abstract

In a recently published article (Yao, Flight, Rouchka, and Moseley, Proteins 2015;83:1470-1487) the authors proposed novel Zn coordination patterns in protein structures, apparently discovered using an unprejudiced approach to the information collected in the Protein data Bank (PDB), which they advocated as superior to the prior-knowledge-informed paradigm. In our assessment of those propositions we demonstrate here that most, if not all, of the "new" coordination geometries are fictitious, as they are based on incorrectly interpreted protein crystal structures, which in themselves are often not error-free. The flaws of interpretation include partial or wrong Zn sites, missed or wrong ligands, ignored crystal symmetry and ligands, etc. In conclusion, we warn against using this and similar meta-analyses that ignore chemical and crystallographic knowledge, and emphasize the importance of safeguarding structural databases against bad apples. Proteins 2016; 84:770-776. © 2016 Wiley Periodicals, Inc.

摘要

在最近发表的一篇文章中(姚、弗莱特、劳奇卡和莫斯利,《蛋白质》,2015年;83卷:1470 - 1487页),作者们提出了蛋白质结构中新型的锌配位模式,显然是通过对蛋白质数据库(PDB)中收集的信息采用无偏见的方法发现的,他们主张这种方法优于基于先验知识的范式。在我们对这些观点的评估中,我们在此证明,大多数(如果不是全部的话)“新”的配位几何结构是虚构的,因为它们基于对蛋白质晶体结构的错误解读,而这些晶体结构本身往往也并非没有错误。解读中的缺陷包括锌位点部分或错误、配体遗漏或错误、忽略晶体对称性和配体等。总之,我们警告不要使用这种以及类似的忽略化学和晶体学知识的荟萃分析,并强调保护结构数据库免受不良数据影响的重要性。《蛋白质》,2016年;84卷:770 - 776页。© 2016威利期刊公司

相似文献

2
Analysis of zinc-ligand bond lengths in metalloproteins: trends and patterns.
Proteins. 2007 Nov 15;69(3):466-75. doi: 10.1002/prot.21536.
3
Aberrant coordination geometries discovered in the most abundant metalloproteins.
Proteins. 2017 May;85(5):885-907. doi: 10.1002/prot.25257. Epub 2017 Mar 7.
4
Zinc coordination spheres in protein structures.
Inorg Chem. 2013 Oct 7;52(19):10983-91. doi: 10.1021/ic401072d. Epub 2013 Sep 23.
6
Cys(x)His(y)-Zn2+ interactions: thiol vs. thiolate coordination.
Proteins. 2002 Oct 1;49(1):37-48. doi: 10.1002/prot.10200.
7
Benchmarking biomolecular force field-based Zn for mono- and bimetallic ligand binding sites.
J Comput Chem. 2023 Mar 30;44(8):912-926. doi: 10.1002/jcc.27052. Epub 2022 Dec 9.
8
Structural biology of zinc.
Adv Protein Chem. 1991;42:281-355. doi: 10.1016/s0065-3233(08)60538-0.
9
The Zinc proteome: a tale of stability and functionality.
Dalton Trans. 2009 Oct 14(38):7946-56. doi: 10.1039/b904404c. Epub 2009 Aug 12.
10
Validation and correction of Zn-CysHis complexes.
Acta Crystallogr D Struct Biol. 2016 Oct 1;72(Pt 10):1110-1118. doi: 10.1107/S2059798316013036. Epub 2016 Sep 15.

引用本文的文献

1
A database overview of metal-coordination distances in metalloproteins.
Acta Crystallogr D Struct Biol. 2024 May 1;80(Pt 5):362-376. doi: 10.1107/S2059798324003152. Epub 2024 Apr 29.
3
Homology-based hydrogen bond information improves crystallographic structures in the PDB.
Protein Sci. 2018 Mar;27(3):798-808. doi: 10.1002/pro.3353. Epub 2017 Dec 8.
4
Detect, correct, retract: How to manage incorrect structural models.
FEBS J. 2018 Feb;285(3):444-466. doi: 10.1111/febs.14320. Epub 2017 Nov 27.
5
CheckMyMetal: a macromolecular metal-binding validation tool.
Acta Crystallogr D Struct Biol. 2017 Mar 1;73(Pt 3):223-233. doi: 10.1107/S2059798317001061. Epub 2017 Feb 22.
6
Twilight reloaded: the peptide experience.
Acta Crystallogr D Struct Biol. 2017 Mar 1;73(Pt 3):211-222. doi: 10.1107/S205979831601620X. Epub 2017 Feb 28.
7
Perspectives and expectations in structural bioinformatics of metalloproteins.
Proteins. 2017 May;85(5):938-944. doi: 10.1002/prot.25263. Epub 2017 Mar 15.
8
Aberrant coordination geometries discovered in the most abundant metalloproteins.
Proteins. 2017 May;85(5):885-907. doi: 10.1002/prot.25257. Epub 2017 Mar 7.
9
Mg2+ ions: do they bind to nucleobase nitrogens?
Nucleic Acids Res. 2017 Jan 25;45(2):987-1004. doi: 10.1093/nar/gkw1175. Epub 2016 Dec 6.
10
Conformation-dependent restraints for polynucleotides: I. Clustering of the geometry of the phosphodiester group.
Nucleic Acids Res. 2016 Sep 30;44(17):8479-89. doi: 10.1093/nar/gkw717. Epub 2016 Aug 12.

本文引用的文献

1
Safeguarding Structural Data Repositories against Bad Apples.
Structure. 2016 Feb 2;24(2):216-20. doi: 10.1016/j.str.2015.12.010.
2
Crystallography and chemistry should always go together: a cautionary tale of protein complexes with cisplatin and carboplatin.
Acta Crystallogr D Biol Crystallogr. 2015 Sep;71(Pt 9):1965-79. doi: 10.1107/S139900471500629X. Epub 2015 Aug 28.
3
A less-biased analysis of metalloproteins reveals novel zinc coordination geometries.
Proteins. 2015 Aug;83(8):1470-87. doi: 10.1002/prot.24834. Epub 2015 Jun 13.
4
Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server.
Nat Protoc. 2014 Jan;9(1):156-70. doi: 10.1038/nprot.2013.172. Epub 2013 Dec 19.
5
Zinc coordination spheres in protein structures.
Inorg Chem. 2013 Oct 7;52(19):10983-91. doi: 10.1021/ic401072d. Epub 2013 Sep 23.
6
REFMAC5 for the refinement of macromolecular crystal structures.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67. doi: 10.1107/S0907444911001314. Epub 2011 Mar 18.
7
Overview of the CCP4 suite and current developments.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42. doi: 10.1107/S0907444910045749. Epub 2011 Mar 18.
8
Analysis of the structural consensus of the zinc coordination centers of metalloprotein structures.
Biochim Biophys Acta. 2007 Oct;1774(10):1247-53. doi: 10.1016/j.bbapap.2007.07.010. Epub 2007 Aug 8.
9
From an inactive prokaryotic SOD homologue to an active protein through site-directed mutagenesis.
J Am Chem Soc. 2005 Sep 28;127(38):13287-92. doi: 10.1021/ja052790o.
10
The Uppsala Electron-Density Server.
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2240-9. doi: 10.1107/S0907444904013253. Epub 2004 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验