Yun Byung-Wook, Skelly Michael J, Yin Minghui, Yu Manda, Mun Bong-Gyu, Lee Sang-Uk, Hussain Adil, Spoel Steven H, Loake Gary J
Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK.
School of Applied Biosciences, College of Agriculture and Life Sciences, KyungPook National University, 80 Daehak-ro, Buk-gu, Daegu, 7201-701, Korea.
New Phytol. 2016 Jul;211(2):516-26. doi: 10.1111/nph.13903. Epub 2016 Feb 24.
Nitric oxide (NO) is emerging as a key regulator of diverse plant cellular processes. A major route for the transfer of NO bioactivity is S-nitrosylation, the addition of an NO moiety to a protein cysteine thiol forming an S-nitrosothiol (SNO). Total cellular levels of protein S-nitrosylation are controlled predominantly by S-nitrosoglutathione reductase 1 (GSNOR1) which turns over the natural NO donor, S-nitrosoglutathione (GSNO). In the absence of GSNOR1 function, GSNO accumulates, leading to dysregulation of total cellular S-nitrosylation. Here we show that endogenous NO accumulation in Arabidopsis, resulting from loss-of-function mutations in NO Overexpression 1 (NOX1), led to disabled Resistance (R) gene-mediated protection, basal resistance and defence against nonadapted pathogens. In nox1 plants both salicylic acid (SA) synthesis and signalling were suppressed, reducing SA-dependent defence gene expression. Significantly, expression of a GSNOR1 transgene complemented the SNO-dependent phenotypes of paraquat resistant 2-1 (par2-1) plants but not the NO-related characters of the nox1-1 line. Furthermore, atgsnor1-3 nox1-1 double mutants supported greater bacterial titres than either of the corresponding single mutants. Our findings imply that GSNO and NO, two pivotal redox signalling molecules, exhibit additive functions and, by extension, may have distinct or overlapping molecular targets during both immunity and development.
一氧化氮(NO)正逐渐成为多种植物细胞过程的关键调节因子。NO生物活性转移的主要途径是S-亚硝基化,即向蛋白质半胱氨酸硫醇添加一个NO部分,形成S-亚硝基硫醇(SNO)。蛋白质S-亚硝基化的总细胞水平主要由S-亚硝基谷胱甘肽还原酶1(GSNOR1)控制,该酶可代谢天然NO供体S-亚硝基谷胱甘肽(GSNO)。在缺乏GSNOR1功能的情况下,GSNO会积累,导致总细胞S-亚硝基化失调。在这里,我们表明,由于NO过表达1(NOX1)功能丧失突变导致拟南芥内源性NO积累,会导致抗性(R)基因介导的保护、基础抗性以及对非适应性病原体的防御功能失效。在nox1植物中,水杨酸(SA)的合成和信号传导均受到抑制,从而降低了SA依赖的防御基因表达。值得注意的是,GSNOR1转基因的表达补充了百草枯抗性2-1(par2-1)植物的SNO依赖型表型,但不能补充nox1-1品系的NO相关特征。此外,atgsnor1-3 nox1-1双突变体比相应的单突变体支持更高的细菌滴度。我们的研究结果表明,GSNO和NO这两种关键的氧化还原信号分子具有累加功能,进而在免疫和发育过程中可能具有不同或重叠的分子靶点。