Suppr超能文献

评估不同机架旋转速度下的四维锥形束计算机断层扫描。

Evaluating the four-dimensional cone beam computed tomography with varying gantry rotation speed.

作者信息

Yoganathan S A, Maria Das K J, Mohamed Ali Shajahan, Agarwal Arpita, Mishra Surendra P, Kumar Shaleen

机构信息

1 Deparment of Radiotherapy, Sanjay Gandhi Post-graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India.

2 Department of Radiation Oncology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India.

出版信息

Br J Radiol. 2016;89(1060):20150870. doi: 10.1259/bjr.20150870. Epub 2016 Feb 26.

Abstract

OBJECTIVE

The purpose of this work was to evaluate the four-dimensional cone beam CT (4DCBCT) imaging with different gantry rotation speed.

METHODS

All the 4DCBCT image acquisitions were carried out in Elekta XVI Symmetry™ system (Elekta AB, Stockholm, Sweden). A dynamic thorax phantom with tumour mimicking inserts of diameter 1, 2 and 3 cm was programmed to simulate the respiratory motion (4 s) of the target. 4DCBCT images were acquired with different gantry rotation speeds (36°, 50°, 75°, 100°, 150° and 200° min(-1)). Owing to the technical limitation of 4DCBCT system, average cone beam CT (CBCT) images derived from the 10 phases of 4DCBCT were used for the internal target volume (ITV) contouring. ITVs obtained from average CBCT were compared with the four-dimensional CT (4DCT). In addition, the image quality of 4DCBCT was also evaluated for various gantry rotation speeds using Catphan(®) 600 (The Phantom Laboratory Inc., Salem, NY).

RESULTS

Compared to 4DCT, the average CBCT underestimated the ITV. The ITV deviation increased with increasing gantry speed (-10.8% vs -17.8% for 36° and 200° min(-1) in 3-cm target) and decreasing target size (-17.8% vs -26.8% for target diameter 3 and 1 cm in 200° min(-1)). Similarly, the image quality indicators such as spatial resolution, contrast-to-noise ratio and uniformity also degraded with increasing gantry rotation speed.

CONCLUSION

The impact of gantry rotation speed has to be considered when using 4DCBCT for ITV definition. The phantom study demonstrated that 4DCBCT with slow gantry rotation showed better image quality and less ITV deviation.

ADVANCES IN KNOWLEDGE

Usually, the gantry rotation period of Elekta 4DCBCT system is kept constant at 4 min (50° min(-1)) for acquisition, and any attempt of decreasing/increasing the acquisition duration requires careful investigation. In this study, the 4DCBCT images with different gantry rotation speed were evaluated.

摘要

目的

本研究旨在评估不同机架旋转速度下的四维锥形束CT(4DCBCT)成像。

方法

所有4DCBCT图像采集均在Elekta XVI Symmetry™系统(瑞典斯德哥尔摩的Elekta AB公司)中进行。使用一个带有模拟直径为1、2和3 cm肿瘤的插入物的动态胸部体模来模拟目标的呼吸运动(4 s)。以不同的机架旋转速度(36°、50°、75°、100°、150°和200°·min⁻¹)采集4DCBCT图像。由于4DCBCT系统的技术限制,从4DCBCT的10个相位获得的平均锥形束CT(CBCT)图像用于勾画内部靶区(ITV)。将从平均CBCT获得的ITV与四维CT(4DCT)进行比较。此外,还使用Catphan® 600(纽约塞勒姆的The Phantom Laboratory Inc.公司)评估了不同机架旋转速度下4DCBCT的图像质量。

结果

与4DCT相比,平均CBCT低估了ITV。ITV偏差随着机架速度的增加(在3 cm靶区中,36°和200°·min⁻¹时分别为-10.8%和-17.8%)和靶区尺寸的减小(在200°·min⁻¹时,靶直径为3 cm和1 cm时分别为-17.8%和-26.8%)而增加。同样,图像质量指标如空间分辨率、对比度噪声比和均匀性也随着机架旋转速度的增加而下降。

结论

在使用4DCBCT进行ITV定义时,必须考虑机架旋转速度的影响。体模研究表明,机架旋转速度慢的4DCBCT显示出更好的图像质量和更小的ITV偏差。

知识进展

通常,Elekta 4DCBCT系统的机架旋转周期在采集时保持恒定为4分钟(50°·min⁻¹),任何缩短/延长采集持续时间的尝试都需要仔细研究。在本研究中,评估了不同机架旋转速度下的4DCBCT图像。

相似文献

1
Evaluating the four-dimensional cone beam computed tomography with varying gantry rotation speed.
Br J Radiol. 2016;89(1060):20150870. doi: 10.1259/bjr.20150870. Epub 2016 Feb 26.
2
Evaluation of gantry speed on image quality and imaging dose for 4D cone-beam CT acquisition.
Radiat Oncol. 2016 Jul 29;11:98. doi: 10.1186/s13014-016-0677-8.
3
Reducing 4DCBCT imaging time and dose: the first implementation of variable gantry speed 4DCBCT on a linear accelerator.
Phys Med Biol. 2017 Jun 7;62(11):4300-4317. doi: 10.1088/1361-6560/62/11/4300. Epub 2017 May 5.
6
Extraction of tumor motion trajectories using PICCS-4DCBCT: a validation study.
Med Phys. 2011 Oct;38(10):5530-8. doi: 10.1118/1.3637501.
7
The first implementation of respiratory triggered 4DCBCT on a linear accelerator.
Phys Med Biol. 2016 May 7;61(9):3488-99. doi: 10.1088/0031-9155/61/9/3488. Epub 2016 Apr 7.
8
Investigating different computed tomography techniques for internal target volume definition.
J Cancer Res Ther. 2017 Oct-Dec;13(6):994-999. doi: 10.4103/0973-1482.220353.
9
Respiratory motion guided four dimensional cone beam computed tomography: encompassing irregular breathing.
Phys Med Biol. 2014 Feb 7;59(3):579-95. doi: 10.1088/0031-9155/59/3/579. Epub 2014 Jan 17.
10
Optimizing 4D cone beam computed tomography acquisition by varying the gantry velocity and projection time interval.
Phys Med Biol. 2013 Mar 21;58(6):1705-23. doi: 10.1088/0031-9155/58/6/1705. Epub 2013 Feb 22.

引用本文的文献

1
Clinical comparison of adaptive 4DCBCT scanning protocols for lung tumor motion assessment.
J Appl Clin Med Phys. 2025 Jul;26(7):e70172. doi: 10.1002/acm2.70172.
2
Simulation of a new respiratory phase sorting method for 4D-imaging using optical surface information towards precision radiotherapy.
Comput Biol Med. 2023 Aug;162:107073. doi: 10.1016/j.compbiomed.2023.107073. Epub 2023 May 27.
3
Image guidance for FLASH radiotherapy.
Med Phys. 2022 Jun;49(6):4109-4122. doi: 10.1002/mp.15662. Epub 2022 Apr 18.
4
Image quality of 4D in-treatment CBCT acquired during lung SBRT using FFF beam: a phantom study.
Radiat Oncol. 2020 Sep 25;15(1):224. doi: 10.1186/s13014-020-01668-3.
5
Quantitative evaluation of 4D Cone beam CT scans with reduced scan time in lung cancer patients.
Radiother Oncol. 2019 Jul;136:64-70. doi: 10.1016/j.radonc.2019.03.027. Epub 2019 Apr 11.
6
Evaluation and Clinical Application of a Commercially Available Iterative Reconstruction Algorithm for CBCT-Based IGRT.
Technol Cancer Res Treat. 2019 Jan 1;18:1533033818823054. doi: 10.1177/1533033818823054.
7
On the improvement of CBCT image quality for soft tissue-based SRS localization.
J Appl Clin Med Phys. 2018 Nov;19(6):177-184. doi: 10.1002/acm2.12470. Epub 2018 Oct 7.
9
Evaluation of gantry speed on image quality and imaging dose for 4D cone-beam CT acquisition.
Radiat Oncol. 2016 Jul 29;11:98. doi: 10.1186/s13014-016-0677-8.

本文引用的文献

1
Evaluation of Elekta 4D cone beam CT-based automatic image registration for radiation treatment of lung cancer.
Br J Radiol. 2015 Sep;88(1053):20140620. doi: 10.1259/bjr.20140620. Epub 2015 Jul 17.
2
Dosimetric verification of gated delivery of electron beams using a 2D ion chamber array.
J Med Phys. 2015 Apr-Jun;40(2):68-73. doi: 10.4103/0971-6203.158671.
3
3D delivered dose assessment using a 4DCT-based motion model.
Med Phys. 2015 Jun;42(6):2897-907. doi: 10.1118/1.4921041.
4
3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models.
Phys Med Biol. 2015 May 7;60(9):3807-24. doi: 10.1088/0031-9155/60/9/3807. Epub 2015 Apr 23.
7
Improving thoracic four-dimensional cone-beam CT reconstruction with anatomical-adaptive image regularization (AAIR).
Phys Med Biol. 2015 Jan 21;60(2):841-68. doi: 10.1088/0031-9155/60/2/841. Epub 2015 Jan 7.
9
A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging.
Med Phys. 2014 Jul;41(7):071903. doi: 10.1118/1.4881326.
10
Performance evaluation of respiratory motion-synchronized dynamic IMRT delivery.
J Appl Clin Med Phys. 2013 May 6;14(3):4103. doi: 10.1120/jacmp.v14i3.4103.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验