O'Brien Ricky T, Cooper Benjamin J, Kipritidis John, Shieh Chun-Chien, Keall Paul J
Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, NSW 2006, Australia.
Phys Med Biol. 2014 Feb 7;59(3):579-95. doi: 10.1088/0031-9155/59/3/579. Epub 2014 Jan 17.
Four dimensional cone beam computed tomography (4DCBCT) images suffer from angular under sampling and bunching of projections due to a lack of feedback between the respiratory signal and the acquisition system. To address this problem, respiratory motion guided 4DCBCT (RMG-4DCBCT) regulates the gantry velocity and projection time interval, in response to the patient's respiratory signal, with the aim of acquiring evenly spaced projections in a number of phase or displacement bins during the respiratory cycle. Our previous study of RMG-4DCBCT was limited to sinusoidal breathing traces. Here we expand on that work to provide a practical algorithm for the case of real patient breathing data. We give a complete description of RMG-4DCBCT including full details on how to implement the algorithms to determine when to move the gantry and when to acquire projections in response to the patient's respiratory signal. We simulate a realistic working RMG-4DCBCT system using 112 breathing traces from 24 lung cancer patients. Acquisition used phase-based binning and parameter settings typically used on commercial 4DCBCT systems (4 min acquisition time, 1200 projections across 10 respiratory bins), with the acceleration and velocity constraints of current generation linear accelerators. We quantified streaking artefacts and image noise for conventional and RMG-4DCBCT methods by reconstructing projection data selected from an oversampled set of Catphan phantom projections. RMG-4DCBCT allows us to optimally trade-off image quality, acquisition time and image dose. For example, for the same image quality and acquisition time as conventional 4DCBCT approximately half the imaging dose is needed. Alternatively, for the same imaging dose, the image quality as measured by the signal to noise ratio, is improved by 63% on average. C-arm cone beam computed tomography systems, with an acceleration up to 200°/s(2), a velocity up to 100°/s and the acquisition of 80 projections per second, allow the image acquisition time to be reduced to below 60 s. We have made considerable progress towards realizing a system to reduce projection clustering in conventional 4DCBCT imaging and hence reduce the imaging dose to the patient.
由于呼吸信号与采集系统之间缺乏反馈,四维锥形束计算机断层扫描(4DCBCT)图像存在角度欠采样和投影聚集的问题。为了解决这个问题,呼吸运动引导的4DCBCT(RMG - 4DCBCT)根据患者的呼吸信号调节机架速度和投影时间间隔,目的是在呼吸周期内在多个相位或位移区间获取均匀间隔的投影。我们之前对RMG - 4DCBCT的研究仅限于正弦呼吸轨迹。在此,我们扩展这项工作,为真实患者呼吸数据的情况提供一种实用算法。我们对RMG - 4DCBCT进行了完整描述,包括如何实现算法以确定何时移动机架以及何时根据患者呼吸信号采集投影的全部细节。我们使用来自24名肺癌患者的112条呼吸轨迹模拟了一个实际工作的RMG - 4DCBCT系统。采集采用基于相位的分箱和商业4DCBCT系统通常使用的参数设置(采集时间4分钟,在10个呼吸区间采集1200个投影),并考虑了当前一代直线加速器的加速度和速度限制。我们通过重建从超采样的Catphan体模投影集中选择的投影数据,对传统和RMG - 4DCBCT方法的条纹伪影和图像噪声进行了量化。RMG - 4DCBCT使我们能够在图像质量、采集时间和图像剂量之间进行最佳权衡。例如,对于与传统4DCBCT相同的图像质量和采集时间,大约只需要一半的成像剂量。或者,对于相同的成像剂量,以信噪比衡量的图像质量平均提高了63%。C形臂锥形束计算机断层扫描系统,加速度高达200°/s(2),速度高达100°/s,每秒采集80个投影,可将图像采集时间缩短至60秒以下。我们在实现一个减少传统4DCBCT成像中投影聚类从而降低患者成像剂量的系统方面取得了重大进展。