Faculty of Medicine and Health, Image X Institute, University of Sydney, Sydney, NSW, Australia.
Liverpool & Macarthur Cancer Therapy Centres, Liverpool Hospital, Liverpool, New South Wales, Australia.
Med Phys. 2024 Feb;51(2):1364-1382. doi: 10.1002/mp.16585. Epub 2023 Jul 10.
The adoption of four-dimensional cone beam computed tomography (4DCBCT) for image-guided lung cancer radiotherapy is increasing, especially for hypofractionated treatments. However, the drawbacks of 4DCBCT include long scan times (∼240 s), inconsistent image quality, higher imaging dose than necessary, and streaking artifacts. With the emergence of linear accelerators that can acquire 4DCBCT scans in a short period of time (9.2 s) there is a need to examine the impact that these very fast gantry rotations have on 4DCBCT image quality.
This study investigates the impact of gantry velocity and angular separation between x-ray projections on image quality and its implication for fast low-dose 4DCBCT with emerging systems, such as the Varian Halcyon that provide fast gantry rotation and imaging. Large and uneven angular separation between x-ray projections is known to reduce 4DCBCT image quality through increased streaking artifacts. However, it is not known when angular separation starts degrading image quality. The study assesses the impact of constant and adaptive gantry velocity and determines the level when angular gaps impair image quality using state-of-the-art reconstruction methods.
This study considers fast low-dose 4DCBCT acquisitions (60-80 s, 200-projection scans). To assess the impact of adaptive gantry rotations, the angular position of x-ray projections from adaptive 4DCBCT acquisitions from a 30-patient clinical trial were analyzed (referred to as patient angular gaps). To assess the impact of angular gaps, variable and static angular gaps (20°, 30°, 40°) were introduced into evenly separated 200 projections (ideal angular separation). To simulate fast gantry rotations, which are on emerging linacs, constant gantry velocity acquisitions (9.2 s, 60 s, 120 s, 240 s) were simulated by sampling x-ray projections at constant intervals using the patient breathing traces from the ADAPT clinical trial (ACTRN12618001440213). The 4D Extended Cardiac-Torso (XCAT) digital phantom was used to simulate projections to remove patient-specific image quality variables. Image reconstruction was performed using Feldkamp-Davis-Kress (FDK), McKinnon-Bates (MKB), and Motion-Compensated-MKB (MCMKB) algorithms. Image quality was assessed using Structural Similarity-Index-Measure (SSIM), Contrast-to-Noise-Ratio (CNR), Signal-to-Noise-Ratio (SNR), Tissue-Interface-Width-Diaphragm (TIW-D), and Tissue-Interface-Width-Tumor (TIW-T).
Patient angular gaps and variable angular gap reconstructions produced similar results to ideal angular separation reconstructions, while static angular gap reconstructions produced lower image quality metrics. For MCMKB-reconstructions, average patient angular gaps produced SSIM-0.98, CNR-13.6, SNR-34.8, TIW-D-1.5 mm, and TIW-T-2.0 mm, static angular gap 40° produced SSIM-0.92, CNR-6.8, SNR-6.7, TIW-D-5.7 mm, and TIW-T-5.9 mm and ideal produced SSIM-1.00, CNR-13.6, SNR-34.8, TIW-D-1.5 mm, and TIW-T-2.0 mm. All constant gantry velocity reconstructions produced lower image quality metrics than ideal angular separation reconstructions regardless of the acquisition time. Motion compensated reconstruction (MCMKB) produced the highest contrast images with low streaking artifacts.
Very fast 4DCBCT scans can be acquired provided that the entire scan range is adaptively sampled, and motion-compensated reconstruction is performed. Importantly, the angular separation between x-ray projections within each individual respiratory bin had minimal effect on the image quality of fast low-dose 4DCBCT imaging. The results will assist the development of future 4DCBCT acquisition protocols that can now be achieved in very short time frames with emerging linear accelerators.
随着四维锥形束 CT(4DCBCT)在图像引导肺癌放射治疗中的应用越来越多,尤其是在分次治疗中。然而,4DCBCT 的缺点包括扫描时间长(约 240 秒)、图像质量不一致、成像剂量过高以及条纹伪影。随着能够在短时间内(9.2 秒)采集 4DCBCT 扫描的直线加速器的出现,需要检查这些非常快速的旋转对 4DCBCT 图像质量的影响。
本研究旨在探讨机架速度和 X 射线投影之间的角度间隔对图像质量的影响,以及对新兴系统(如提供快速机架旋转和成像的瓦里安 Halcyon)快速低剂量 4DCBCT 的影响。已知较大且不均匀的 X 射线投影角度间隔会通过增加条纹伪影降低 4DCBCT 图像质量。然而,目前尚不清楚角度间隔何时开始降低图像质量。本研究评估了恒定和自适应机架速度的影响,并使用最先进的重建方法确定了角度间隙影响图像质量的水平。
本研究考虑快速低剂量 4DCBCT 采集(60-80 秒,200 投影扫描)。为了评估自适应机架旋转的影响,分析了来自 30 例临床试验的自适应 4DCBCT 采集的 X 射线投影的角度位置(称为患者角度间隙)。为了评估角度间隙的影响,引入了可变和静态角度间隙(20°、30°、40°)到均匀间隔的 200 个投影中(理想角度间隔)。为了模拟新兴直线加速器上的快速机架旋转,通过使用 ADAPT 临床试验中的患者呼吸轨迹以恒定间隔采样 X 射线投影来模拟恒定机架速度采集(9.2 秒、60 秒、120 秒、240 秒)。使用 XCAT 数字体模模拟投影,以去除特定于患者的图像质量变量。使用 Feldkamp-Davis-Kress(FDK)、McKinnon-Bates(MKB)和运动补偿-MKB(MCMKB)算法进行图像重建。使用结构相似性指数测量(SSIM)、对比噪声比(CNR)、信噪比(SNR)、组织界面宽度-膈(TIW-D)和组织界面宽度-肿瘤(TIW-T)评估图像质量。
患者角度间隙和可变角度间隙重建产生的结果与理想角度间隔重建相似,而静态角度间隙重建产生的图像质量指标较低。对于 MCMKB 重建,平均患者角度间隙产生 SSIM-0.98、CNR-13.6、SNR-34.8、TIW-D-1.5 毫米和 TIW-T-2.0 毫米,静态角度间隙 40°产生 SSIM-0.92、CNR-6.8、SNR-6.7、TIW-D-5.7 毫米和 TIW-T-5.9 毫米,理想产生 SSIM-1.00、CNR-13.6、SNR-34.8、TIW-D-1.5 毫米和 TIW-T-2.0 毫米。无论采集时间如何,所有恒定机架速度重建都产生低于理想角度间隔重建的图像质量指标。运动补偿重建(MCMKB)产生具有低条纹伪影的高对比度图像。
只要整个扫描范围能够自适应采样并进行运动补偿重建,就可以采集非常快速的 4DCBCT 扫描。重要的是,每个呼吸仓内 X 射线投影之间的角度间隔对快速低剂量 4DCBCT 成像的图像质量影响很小。研究结果将有助于制定未来的 4DCBCT 采集协议,现在可以在新兴的直线加速器中在非常短的时间内实现。