Pine Michael, Fry Donald E, Hannan Edward L, Naessens James M, Whitman Kay, Reband Agnes, Qian Feng, Schindler Joseph, Sonneborn Mark, Roland Jaclyn, Hyde Linda, Dennison Barbara A
1 MPA Healthcare Solutions, Inc., Chicago, IL.
2 The Mayo Clinic, Rochester, MN.
Am J Med Qual. 2017 Mar/Apr;32(2):141-147. doi: 10.1177/1062860616629205. Epub 2016 Feb 1.
Numerical laboratory data at admission have been proposed for enhancement of inpatient predictive modeling from administrative claims. In this study, predictive models for inpatient/30-day postdischarge mortality and for risk-adjusted prolonged length of stay, as a surrogate for severe inpatient complications of care, were designed with administrative data only and with administrative data plus numerical laboratory variables. A comparison of resulting inpatient models for acute myocardial infarction, congestive heart failure, coronary artery bypass grafting, and percutaneous cardiac interventions demonstrated improved discrimination and calibration with administrative data plus laboratory values compared to administrative data only for both mortality and prolonged length of stay. Improved goodness of fit was most apparent in acute myocardial infarction and percutaneous cardiac intervention. The emergence of electronic medical records should make the addition of laboratory variables to administrative data an efficient and practical method to clinically enhance predictive modeling of inpatient outcomes of care.
有人提出利用入院时的数值实验室数据来加强基于行政索赔的住院患者预测模型。在本研究中,仅使用行政数据以及行政数据加数值实验室变量,设计了住院患者/出院后30天死亡率以及风险调整后的延长住院时间(作为严重住院护理并发症的替代指标)的预测模型。对急性心肌梗死、充血性心力衰竭、冠状动脉搭桥术和经皮心脏介入治疗的住院模型结果进行比较,结果表明,与仅使用行政数据相比,对于死亡率和延长住院时间,行政数据加实验室值的模型在区分度和校准方面均有所改善。拟合优度的改善在急性心肌梗死和经皮心脏介入治疗中最为明显。电子病历的出现应使在行政数据中添加实验室变量成为一种有效且实用的方法,可在临床上加强对住院护理结果的预测模型。