Pine Michael, Jordan Harmon S, Elixhauser Anne, Fry Donald E, Hoaglin David C, Jones Barbara, Meimban Roger, Warner David, Gonzales Junius
Michael Pine and Associates Inc, Chicago, Ill, USA.
JAMA. 2007 Jan 3;297(1):71-6. doi: 10.1001/jama.297.1.71.
Comparisons of risk-adjusted hospital performance often are important components of public reports, pay-for-performance programs, and quality improvement initiatives. Risk-adjustment equations used in these analyses must contain sufficient clinical detail to ensure accurate measurements of hospital quality.
To assess the effect on risk-adjusted hospital mortality rates of adding present on admission codes and numerical laboratory data to administrative claims data.
DESIGN, SETTING, AND PATIENTS: Comparison of risk-adjustment equations for inpatient mortality from July 2000 through June 2003 derived by sequentially adding increasingly difficult-to-obtain clinical data to an administrative database of 188 Pennsylvania hospitals. Patients were hospitalized for acute myocardial infarction, congestive heart failure, cerebrovascular accident, gastrointestinal tract hemorrhage, or pneumonia or underwent an abdominal aortic aneurysm repair, coronary artery bypass graft surgery, or craniotomy.
C statistics as a measure of the discriminatory power of alternative risk-adjustment models (administrative, present on admission, laboratory, and clinical for each of the 5 conditions and 3 procedures).
The mean (SD) c statistic for the administrative model was 0.79 (0.02). Adding present on admission codes and numerical laboratory data collected at the time of admission resulted in substantially improved risk-adjustment equations (mean [SD] c statistic of 0.84 [0.01] and 0.86 [0.01], respectively). Modest additional improvements were obtained by adding more complex and expensive to collect clinical data such as vital signs, blood culture results, key clinical findings, and composite scores abstracted from patients' medical records (mean [SD] c statistic of 0.88 [0.01]).
This study supports the value of adding present on admission codes and numerical laboratory values to administrative databases. Secondary abstraction of difficult-to-obtain key clinical findings adds little to the predictive power of risk-adjustment equations.
风险调整后的医院绩效比较通常是公共报告、按绩效付费项目和质量改进举措的重要组成部分。这些分析中使用的风险调整方程必须包含足够的临床细节,以确保对医院质量进行准确测量。
评估将入院时存在的编码和数值实验室数据添加到行政索赔数据中对风险调整后的医院死亡率的影响。
设计、设置和患者:对2000年7月至2003年6月期间宾夕法尼亚州188家医院的行政数据库进行比较,通过依次添加越来越难以获取的临床数据得出住院死亡率的风险调整方程。患者因急性心肌梗死、充血性心力衰竭、脑血管意外、胃肠道出血或肺炎住院,或接受腹主动脉瘤修复、冠状动脉搭桥手术或开颅手术。
C统计量,作为替代风险调整模型(行政、入院时存在、实验室以及针对5种疾病和3种手术各自的临床模型)鉴别能力的一种衡量指标。
行政模型的平均(标准差)C统计量为0.79(0.02)。添加入院时存在的编码和入院时收集的数值实验室数据可显著改善风险调整方程(平均[标准差]C统计量分别为0.84[0.01]和0.86[0.01])。通过添加更复杂且收集成本更高的临床数据,如生命体征、血培养结果、关键临床发现以及从患者病历中提取的综合评分,可获得适度的额外改善(平均[标准差]C统计量为0.88[0.01])。
本研究支持将入院时存在的编码和数值实验室值添加到行政数据库中的价值。对难以获取的关键临床发现进行二次提取对风险调整方程的预测能力提升不大。