Schewe Marcus, Nematian-Ardestani Ehsan, Sun Han, Musinszki Marianne, Cordeiro Sönke, Bucci Giovanna, de Groot Bert L, Tucker Stephen J, Rapedius Markus, Baukrowitz Thomas
Institute of Physiology, Christian-Albrechts University, 24118 Kiel, Germany.
Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany.
Cell. 2016 Feb 25;164(5):937-49. doi: 10.1016/j.cell.2016.02.002.
Two-pore domain (K2P) K(+) channels are major regulators of excitability that endow cells with an outwardly rectifying background "leak" conductance. In some K2P channels, strong voltage-dependent activation has been observed, but the mechanism remains unresolved because they lack a canonical voltage-sensing domain. Here, we show voltage-dependent gating is common to most K2P channels and that this voltage sensitivity originates from the movement of three to four ions into the high electric field of an inactive selectivity filter. Overall, this ion-flux gating mechanism generates a one-way "check valve" within the filter because outward movement of K(+) induces filter opening, whereas inward movement promotes inactivation. Furthermore, many physiological stimuli switch off this flux gating mode to convert K2P channels into a leak conductance. These findings provide insight into the functional plasticity of a K(+)-selective filter and also refine our understanding of K2P channels and the mechanisms by which ion channels can sense voltage.
双孔结构域(K2P)钾离子通道是兴奋性的主要调节因子,赋予细胞外向整流背景“泄漏”电导。在一些K2P通道中,已观察到强烈的电压依赖性激活,但由于它们缺乏典型的电压感应结构域,其机制仍未得到解决。在这里,我们表明电压依赖性门控在大多数K2P通道中很常见,并且这种电压敏感性源于三到四个离子进入失活选择性过滤器的高电场。总体而言,这种离子通量门控机制在过滤器内产生一个单向“止回阀”,因为钾离子的外向运动诱导过滤器开放,而内向运动则促进失活。此外,许多生理刺激会关闭这种通量门控模式,将K2P通道转变为泄漏电导。这些发现为钾离子选择性过滤器的功能可塑性提供了见解,也完善了我们对K2P通道以及离子通道感知电压机制的理解。