University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, Lyon 69008, France.
Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.
Proc Natl Acad Sci U S A. 2024 Oct 22;121(43):e2400650121. doi: 10.1073/pnas.2400650121. Epub 2024 Oct 15.
Two-pore domain potassium (K2P) channels play a central role in modulating cellular excitability and neuronal function. The unique structure of the selectivity filter in K2P and other potassium channels determines their ability to allow the selective passage of potassium ions across cell membranes. The nematode has one of the largest K2P families, with 47 subunit-coding genes. This remarkable expansion has been accompanied by the evolution of atypical selectivity filter sequences that diverge from the canonical TxGYG motif. Whether and how this sequence variation may impact the function of K2P channels has not been investigated so far. Here, we show that the UNC-58 K2P channel is constitutively permeable to sodium ions and that a cysteine residue in its selectivity filter is responsible for this atypical behavior. Indeed, by performing in vivo electrophysiological recordings and Ca imaging experiments, we demonstrate that UNC-58 has a depolarizing effect in muscles and sensory neurons. Consistently, gain-of-function mutants are hypercontracted, unlike the relaxed phenotype observed in hyperactive mutants of many neuromuscular K2P channels. Finally, by combining molecular dynamics simulations with functional studies in oocytes, we show that the atypical cysteine residue plays a key role in the unconventional sodium permeability of UNC-58. As predicting the consequences of selectivity filter sequence variations in silico remains a major challenge, our study illustrates how functional experiments are essential to determine the contribution of such unusual potassium channels to the electrical profile of excitable cells.
双孔域钾(K2P)通道在调节细胞兴奋性和神经元功能方面发挥着核心作用。K2P 和其他钾通道选择性滤器的独特结构决定了它们允许钾离子选择性穿过细胞膜的能力。线虫拥有最大的 K2P 家族之一,有 47 个亚基编码基因。这种显著的扩张伴随着非典型选择性滤器序列的进化,这些序列与典型的 TxGYG 基序不同。到目前为止,还没有研究过这种序列变化是否以及如何影响 K2P 通道的功能。在这里,我们表明 UNC-58 K2P 通道对钠离子具有组成型通透性,并且其选择性滤器中的一个半胱氨酸残基负责这种非典型行为。实际上,通过进行体内电生理记录和 Ca 成像实验,我们证明 UNC-58 在肌肉和感觉神经元中具有去极化作用。一致地,功能获得性突变体表现出过度收缩,与许多神经肌肉 K2P 通道的过度活跃突变体观察到的放松表型不同。最后,通过将分子动力学模拟与卵母细胞中的功能研究相结合,我们表明非典型半胱氨酸残基在 UNC-58 的非常规钠离子通透性中起着关键作用。由于在计算机上预测选择性滤器序列变化的后果仍然是一个主要挑战,我们的研究说明了功能实验对于确定这种不寻常的钾通道对可兴奋细胞的电特性的贡献是多么重要。