Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.
Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
J Alzheimers Dis. 2016;51(4):1003-22. doi: 10.3233/JAD-150884.
Sutherland et al. (2011) suggested that, instead of risk factors for single neurodegenerative disorders (NDDs), there was a need to identify specific "drivers", i.e., risk factors with impact on specific deposits, such as amyloid-β, tau, or α-synuclein, acting across entities.
Redefining drivers as "neither protein/gene- nor entity-specific features identifiable in the clinical and general epidemiology of conformational NDDs (CNDDs) as potential footprints of templating/spread/transfer mechanisms", we conducted an analysis of the epidemiology of ten CNDDs, searching for patterns.
We identified seven potential drivers, each of which was shared by at least two CNDDs: 1) an age-at-exposure-related susceptibility to Creutzfeldt-Jakob disease (CJD) and several late-life CNDDs; 2) a relationship between age at onset, survival, and incidence; 3) shared genetic risk factors for CJD and late-life CNNDs; 4) partly shared personal (diagnostic, educational, behavioral, and social risk factors) predating clinical onset of late-life CNDDs; 5) two environmental risk factors, namely, surgery for sporadic CJD and amyotrophic lateral sclerosis, and Bordetella pertussis infection for Parkinson's disease; 6) reticulo-endothelial system stressors or general drivers (andropause or premenopausal estrogen deficiency, APOEɛ4, and vascular risk factors) for late-life CNDDs such as dementia/Alzheimer's disease, type-2 diabetes mellitus, and some sporadic cardiac and vascular degenerative diseases; and 7) a high, invariant incidence ratio of sporadic to genetic forms of mid- and late-life CNDDs, and type-2 diabetes mellitus.
There might be a systematic epidemiologic pattern induced by specific proteins (PrP, TDP-43, SOD1, α-synuclein, amyloid-β, tau, Langerhans islet peptide, and transthyretin) or established combinations of these.
Sutherland 等人(2011 年)提出,与其寻找单一神经退行性疾病(NDD)的风险因素,不如确定特定的“驱动因素”,即对特定沉积物(如淀粉样蛋白-β、tau 或 α-synuclein)具有影响的风险因素,这些风险因素跨越实体起作用。
我们将驱动因素重新定义为“在构象性神经退行性疾病(CNDD)的临床和一般流行病学中无法识别的既不是蛋白质/基因特异性特征,也不是实体特异性特征,可作为模板/传播/转移机制的潜在痕迹”,我们对十种 CNDD 的流行病学进行了分析,以寻找模式。
我们确定了七个潜在的驱动因素,每个因素都至少与两种 CNDD 相关:1)与接触有关的易感性,即克雅氏病(CJD)和几种老年 CNDD;2)发病年龄、生存和发病率之间的关系;3)CJD 和老年 CNND 共享遗传风险因素;4)部分共同的个人(诊断、教育、行为和社会风险因素),先于老年 CNDD 的临床发病;5)两种环境风险因素,即散发性 CJD 和肌萎缩侧索硬化症的手术,以及帕金森病的博德特氏菌感染;6)网状内皮系统应激源或一般驱动因素(男性更年期或绝经前雌激素缺乏、APOEɛ4 和血管危险因素),用于老年 CNDD,如痴呆/阿尔茨海默病、2 型糖尿病和一些散发性心脏和血管退行性疾病;7)中晚期 CNDD 和 2 型糖尿病的散发性与遗传性形式的高、不变的发病率比。
可能存在由特定蛋白质(PrP、TDP-43、SOD1、α-synuclein、淀粉样蛋白-β、tau、朗格汉斯胰岛肽和转甲状腺素蛋白)或这些蛋白质的既定组合引起的系统流行病学模式。