Suppr超能文献

驱动因素:神经退行性疾病流行病学的生物情境化、跨推断观点。

Drivers: A Biologically Contextualized, Cross-Inferential View of the Epidemiology of Neurodegenerative Disorders.

机构信息

Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.

Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.

出版信息

J Alzheimers Dis. 2016;51(4):1003-22. doi: 10.3233/JAD-150884.

Abstract

BACKGROUND

Sutherland et al. (2011) suggested that, instead of risk factors for single neurodegenerative disorders (NDDs), there was a need to identify specific "drivers", i.e., risk factors with impact on specific deposits, such as amyloid-β, tau, or α-synuclein, acting across entities.

OBJECTIVES AND METHODS

Redefining drivers as "neither protein/gene- nor entity-specific features identifiable in the clinical and general epidemiology of conformational NDDs (CNDDs) as potential footprints of templating/spread/transfer mechanisms", we conducted an analysis of the epidemiology of ten CNDDs, searching for patterns.

RESULTS

We identified seven potential drivers, each of which was shared by at least two CNDDs: 1) an age-at-exposure-related susceptibility to Creutzfeldt-Jakob disease (CJD) and several late-life CNDDs; 2) a relationship between age at onset, survival, and incidence; 3) shared genetic risk factors for CJD and late-life CNNDs; 4) partly shared personal (diagnostic, educational, behavioral, and social risk factors) predating clinical onset of late-life CNDDs; 5) two environmental risk factors, namely, surgery for sporadic CJD and amyotrophic lateral sclerosis, and Bordetella pertussis infection for Parkinson's disease; 6) reticulo-endothelial system stressors or general drivers (andropause or premenopausal estrogen deficiency, APOEɛ4, and vascular risk factors) for late-life CNDDs such as dementia/Alzheimer's disease, type-2 diabetes mellitus, and some sporadic cardiac and vascular degenerative diseases; and 7) a high, invariant incidence ratio of sporadic to genetic forms of mid- and late-life CNDDs, and type-2 diabetes mellitus.

CONCLUSION

There might be a systematic epidemiologic pattern induced by specific proteins (PrP, TDP-43, SOD1, α-synuclein, amyloid-β, tau, Langerhans islet peptide, and transthyretin) or established combinations of these.

摘要

背景

Sutherland 等人(2011 年)提出,与其寻找单一神经退行性疾病(NDD)的风险因素,不如确定特定的“驱动因素”,即对特定沉积物(如淀粉样蛋白-β、tau 或 α-synuclein)具有影响的风险因素,这些风险因素跨越实体起作用。

目的和方法

我们将驱动因素重新定义为“在构象性神经退行性疾病(CNDD)的临床和一般流行病学中无法识别的既不是蛋白质/基因特异性特征,也不是实体特异性特征,可作为模板/传播/转移机制的潜在痕迹”,我们对十种 CNDD 的流行病学进行了分析,以寻找模式。

结果

我们确定了七个潜在的驱动因素,每个因素都至少与两种 CNDD 相关:1)与接触有关的易感性,即克雅氏病(CJD)和几种老年 CNDD;2)发病年龄、生存和发病率之间的关系;3)CJD 和老年 CNND 共享遗传风险因素;4)部分共同的个人(诊断、教育、行为和社会风险因素),先于老年 CNDD 的临床发病;5)两种环境风险因素,即散发性 CJD 和肌萎缩侧索硬化症的手术,以及帕金森病的博德特氏菌感染;6)网状内皮系统应激源或一般驱动因素(男性更年期或绝经前雌激素缺乏、APOEɛ4 和血管危险因素),用于老年 CNDD,如痴呆/阿尔茨海默病、2 型糖尿病和一些散发性心脏和血管退行性疾病;7)中晚期 CNDD 和 2 型糖尿病的散发性与遗传性形式的高、不变的发病率比。

结论

可能存在由特定蛋白质(PrP、TDP-43、SOD1、α-synuclein、淀粉样蛋白-β、tau、朗格汉斯胰岛肽和转甲状腺素蛋白)或这些蛋白质的既定组合引起的系统流行病学模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/163e/4927850/60ca3ff9ed47/jad-51-jad150884-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验