Prusiner Stanley B, Woerman Amanda L, Mordes Daniel A, Watts Joel C, Rampersaud Ryan, Berry David B, Patel Smita, Oehler Abby, Lowe Jennifer K, Kravitz Stephanie N, Geschwind Daniel H, Glidden David V, Halliday Glenda M, Middleton Lefkos T, Gentleman Steve M, Grinberg Lea T, Giles Kurt
Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94143; Department of Neurology, University of California, San Francisco, CA 94143; Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143;
Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94143;
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):E5308-17. doi: 10.1073/pnas.1514475112. Epub 2015 Aug 31.
Prions are proteins that adopt alternative conformations that become self-propagating; the PrP(Sc) prion causes the rare human disorder Creutzfeldt-Jakob disease (CJD). We report here that multiple system atrophy (MSA) is caused by a different human prion composed of the α-synuclein protein. MSA is a slowly evolving disorder characterized by progressive loss of autonomic nervous system function and often signs of parkinsonism; the neuropathological hallmark of MSA is glial cytoplasmic inclusions consisting of filaments of α-synuclein. To determine whether human α-synuclein forms prions, we examined 14 human brain homogenates for transmission to cultured human embryonic kidney (HEK) cells expressing full-length, mutant human α-synuclein fused to yellow fluorescent protein (α-syn140A53T-YFP) and TgM83(+/-) mice expressing α-synuclein (A53T). The TgM83(+/-) mice that were hemizygous for the mutant transgene did not develop spontaneous illness; in contrast, the TgM83(+/+) mice that were homozygous developed neurological dysfunction. Brain extracts from 14 MSA cases all transmitted neurodegeneration to TgM83(+/-) mice after incubation periods of ∼120 d, which was accompanied by deposition of α-synuclein within neuronal cell bodies and axons. All of the MSA extracts also induced aggregation of α-synA53T-YFP in cultured cells, whereas none of six Parkinson's disease (PD) extracts or a control sample did so. Our findings argue that MSA is caused by a unique strain of α-synuclein prions, which is different from the putative prions causing PD and from those causing spontaneous neurodegeneration in TgM83(+/+) mice. Remarkably, α-synuclein is the first new human prion to be identified, to our knowledge, since the discovery a half century ago that CJD was transmissible.
朊病毒是一种蛋白质,能呈现可自我传播的替代构象;朊蛋白(PrP(Sc))会引发罕见的人类疾病克雅氏病(CJD)。我们在此报告,多系统萎缩症(MSA)是由一种不同的人类朊病毒引起的,该朊病毒由α-突触核蛋白构成。MSA是一种缓慢发展的疾病,其特征是自主神经系统功能逐渐丧失,且常伴有帕金森症迹象;MSA的神经病理学标志是由α-突触核蛋白细丝组成的胶质细胞质内含物。为了确定人类α-突触核蛋白是否形成朊病毒,我们检测了14份人脑匀浆,观察其是否能传播给表达全长突变型人类α-突触核蛋白(与黄色荧光蛋白融合,即α-syn140A53T-YFP)的培养人胚肾(HEK)细胞,以及表达α-突触核蛋白(A53T)的TgM83(+/-)小鼠。携带突变转基因半合子的TgM83(+/-)小鼠未出现自发性疾病;相比之下,携带突变转基因纯合子的TgM83(+/+)小鼠出现了神经功能障碍。14例MSA病例的脑提取物在约120天的潜伏期后,均将神经退行性变传播给了TgM83(+/-)小鼠,同时伴有α-突触核蛋白在神经元细胞体和轴突内的沉积。所有MSA提取物还诱导了培养细胞中α-synA53T-YFP的聚集,而6份帕金森病(PD)提取物和1份对照样品均未出现这种情况。我们的研究结果表明,MSA是由一种独特的α-突触核蛋白朊病毒株引起的,它不同于推测的导致PD的朊病毒,也不同于导致TgM83(+/+)小鼠自发性神经退行性变的朊病毒。值得注意的是,据我们所知,自半个世纪前发现CJD具有传染性以来,α-突触核蛋白是首个被鉴定出的新型人类朊病毒。