Suppr超能文献

脑电图微观结构睡眠要素中的连通性测量

Connectivity Measures in EEG Microstructural Sleep Elements.

作者信息

Sakellariou Dimitris, Koupparis Andreas M, Kokkinos Vasileios, Koutroumanidis Michalis, Kostopoulos George K

机构信息

Neurophysiology Unit, Department of Physiology, University of PatrasPatras, Greece; Department of Clinical Neurophysiology and Epilepsy, Guy's and St. Thomas' NHS Foundation TrustLondon, UK; Division of Neuroscience, Department of Basic and Clinical Neuroscience, King's College LondonLondon, UK.

Neurophysiology Unit, Department of Physiology, University of Patras Patras, Greece.

出版信息

Front Neuroinform. 2016 Feb 17;10:5. doi: 10.3389/fninf.2016.00005. eCollection 2016.

Abstract

During Non-Rapid Eye Movement sleep (NREM) the brain is relatively disconnected from the environment, while connectedness between brain areas is also decreased. Evidence indicates, that these dynamic connectivity changes are delivered by microstructural elements of sleep: short periods of environmental stimuli evaluation followed by sleep promoting procedures. The connectivity patterns of the latter, among other aspects of sleep microstructure, are still to be fully elucidated. We suggest here a methodology for the assessment and investigation of the connectivity patterns of EEG microstructural elements, such as sleep spindles. The methodology combines techniques in the preprocessing, estimation, error assessing and visualization of results levels in order to allow the detailed examination of the connectivity aspects (levels and directionality of information flow) over frequency and time with notable resolution, while dealing with the volume conduction and EEG reference assessment. The high temporal and frequency resolution of the methodology will allow the association between the microelements and the dynamically forming networks that characterize them, and consequently possibly reveal aspects of the EEG microstructure. The proposed methodology is initially tested on artificially generated signals for proof of concept and subsequently applied to real EEG recordings via a custom built MATLAB-based tool developed for such studies. Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy volunteers indicate a prevailing pattern of interactions between centroparietal and frontal regions. We demonstrate hereby, an opening to our knowledge attempt to estimate the scalp EEG connectivity that characterizes fast sleep spindles via an "EEG-element connectivity" methodology we propose. The application of the latter, via a computational tool we developed suggests it is able to investigate the connectivity patterns related to the occurrence of EEG microstructural elements. Network characterization of specified physiological or pathological EEG microstructural elements can potentially be of great importance in the understanding, identification, and prediction of health and disease.

摘要

在非快速眼动睡眠(NREM)期间,大脑与环境相对脱节,同时脑区之间的连通性也会降低。有证据表明,这些动态连通性变化是由睡眠的微观结构元素引起的:短暂的环境刺激评估期后接着是促进睡眠的过程。后者的连通性模式,以及睡眠微观结构的其他方面,仍有待充分阐明。我们在此提出一种方法,用于评估和研究脑电图(EEG)微观结构元素的连通性模式,例如睡眠纺锤波。该方法结合了预处理、估计、误差评估和结果可视化等技术层面,以便能够在处理容积传导和脑电图参考评估的同时,以显著的分辨率详细检查频率和时间上的连通性方面(信息流的水平和方向性)。该方法的高时间和频率分辨率将允许微量元素与表征它们的动态形成网络之间建立关联,并因此可能揭示脑电图微观结构的各个方面。所提出的方法首先在人工生成的信号上进行测试以验证概念,随后通过为这类研究开发的基于MATLAB的定制工具应用于实际的脑电图记录。在5名健康志愿者的整夜睡眠中记录的843个快速睡眠纺锤波的初步结果表明,中央顶叶和额叶区域之间存在一种普遍的相互作用模式。我们在此证明,我们通过提出的“脑电图元素连通性”方法来估计表征快速睡眠纺锤波的头皮脑电图连通性的知识尝试有了一个开端。通过我们开发的计算工具应用后者表明,它能够研究与脑电图微观结构元素出现相关的连通性模式。特定生理或病理脑电图微观结构元素的网络特征在健康和疾病的理解、识别及预测中可能具有极其重要的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed9f/4756166/dded3d4542ff/fninf-10-00005-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验