Suppr超能文献

跨被试脑电微结构网络研究:睡眠纺锤波研究。

Cross-subject network investigation of the EEG microstructure: A sleep spindles study.

机构信息

Division of Neuroscience, Department of Basic and Clinical Neuroscience, King's College, London, UK; Neurophysiology Unit, Department of Physiology, School of Medicine, University of Patras, Rio, Greece; Department of Clinical Neurophysiology and Epilepsy, Guy's and St Thomas' NHS Foundation Trust, London, UK.

Neurophysiology Unit, Department of Physiology, School of Medicine, University of Patras, Rio, Greece; Department of Clinical Neurophysiology and Epilepsy, Guy's and St Thomas' NHS Foundation Trust, London, UK.

出版信息

J Neurosci Methods. 2019 Jan 15;312:16-26. doi: 10.1016/j.jneumeth.2018.11.001. Epub 2018 Nov 5.

Abstract

BACKGROUND

The microstructural EEG elements and their functional networks relate to many neurophysiological functions of the brain and can reveal abnormalities. Despite the blooming variety of methods for estimating connectivity in the EEG of a single subject, a common pitfall is seen in relevant studies; grand averaging is used for estimating the characteristic connectivity patterns of a group of subjects. This averaging may distort results and fail to account for the internal variability of connectivity results across the subjects of a group.

NEW METHOD

In this study, we propose a novel methodology for the cross-subject network investigation of EEG graphoelements. We used dimensionality reduction techniques in order to reveal internal connectivity properties and to examine how consistent these are across a number of subjects. In addition, graph theoretical measures were utilized to prioritize regions according to their network attributes.

RESULTS

As proof of concept, we applied this method on fast sleep spindles across 10 healthy subjects. Neurophysiological findings revealed subnetworks of the spindle events across subjects, highlighting a predominance for occipito-parietal areas and their connectivity with frontal regions.

COMPARISON WITH EXISTING METHODS

This is a new approach for the examination of within-group connectivities in EEG research. The results accounted for more than 85% of the overall data variance and the detected subnetworks were found to be meaningful down-projections of the grand average of the group, suggesting sufficient performance for the proposed methodology.

CONCLUSION

We conclude that the proposed methodology can serve as an observatory tool for the EEG connectivity patterns across subjects, providing a supplementary analysis of the existing topography techniques.

摘要

背景

微结构 EEG 元素及其功能网络与大脑的许多神经生理功能有关,可以揭示异常。尽管用于估计单个被试 EEG 连通性的方法种类繁多,但在相关研究中仍存在一个常见的陷阱;大平均法用于估计一组被试的特征连通模式。这种平均可能会扭曲结果,并且无法解释组内被试连通性结果的内部可变性。

新方法

在这项研究中,我们提出了一种用于 EEG 图形元素的跨被试网络研究的新方法。我们使用降维技术来揭示内部连通性特性,并检查这些特性在多个被试中是如何一致的。此外,还利用图论度量来根据其网络属性对区域进行优先级排序。

结果

作为概念验证,我们将该方法应用于 10 名健康被试的快速睡眠梭形波。神经生理学发现揭示了跨被试的纺锤体事件的子网,突出了枕顶区域及其与额叶区域的连接性的优势。

与现有方法的比较

这是 EEG 研究中检查组内连通性的新方法。结果解释了超过 85%的总体数据方差,并且检测到的子网是组平均的有意义的向下投影,表明所提出的方法具有足够的性能。

结论

我们得出结论,所提出的方法可以作为跨被试 EEG 连通模式的观测工具,为现有的地形技术提供补充分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验