Bady Pierre, Delorenzi Mauro, Hegi Monika E
Department of Neurosurgery, Lausanne University Hospital, Lausanne, Switzerland; Neuroscience Research Center, Lausanne University Hospital, Lausanne, Switzerland; Department of Education and Research, University of Lausanne, Lausanne, Switzerland; Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland; Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland; Department of Oncology, University of Lausanne, Lausanne, Switzerland.
J Mol Diagn. 2016 May;18(3):350-361. doi: 10.1016/j.jmoldx.2015.11.009. Epub 2016 Feb 27.
The methylation status of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene is an important predictive biomarker for benefit from alkylating agent therapy in glioblastoma. Our model MGMT-STP27 allows prediction of the methylation status of the MGMT promoter using data from the Illumina's Human Methylation BeadChips (HM-27K and HM-450K) that is publically available for many cancer data sets. Here, we investigate the impact of the context of genetic and epigenetic alterations and tumor type on the classification and report on technical aspects, such as robustness of cutoff definition and preprocessing of the data. The association between gene copy number variation, predicted MGMT methylation, and MGMT expression revealed a gene dosage effect on MGMT expression in lower grade glioma (World Health Organization grade II/III) that in contrast to glioblastoma usually carry two copies of chromosome 10 on which MGMT resides (10q26.3). This implies some MGMT expression, potentially conferring residual repair function blunting the therapeutic effect of alkylating agents. A sensitivity analyses corroborated the performance of the original cutoff for various optimization criteria and for most data preprocessing methods. Finally, we propose an R package mgmtstp27 that allows prediction of the methylation status of the MGMT promoter and calculation of appropriate confidence and/or prediction intervals. Overall, MGMT-STP27 is a robust model for MGMT classification that is independent of tumor type and is adapted for single sample prediction.
O(6)-甲基鸟嘌呤-DNA甲基转移酶(MGMT)基因的甲基化状态是胶质母细胞瘤中从烷化剂治疗中获益的重要预测生物标志物。我们的模型MGMT-STP27能够利用Illumina公司的人类甲基化芯片(HM-27K和HM-450K)数据预测MGMT启动子的甲基化状态,这些数据可公开获取,适用于许多癌症数据集。在此,我们研究基因和表观遗传改变背景以及肿瘤类型对分类的影响,并报告技术方面的情况,如截断定义的稳健性和数据预处理。基因拷贝数变异、预测的MGMT甲基化和MGMT表达之间的关联揭示了低级别胶质瘤(世界卫生组织II/III级)中MGMT表达存在基因剂量效应,与胶质母细胞瘤不同,低级别胶质瘤通常携带两条MGMT所在的10号染色体拷贝(10q26.3)。这意味着存在一定的MGMT表达,可能赋予残留修复功能,从而削弱烷化剂的治疗效果。敏感性分析证实了原始截断值在各种优化标准和大多数数据预处理方法下的性能。最后,我们提出了一个R包mgmtstp27,它能够预测MGMT启动子的甲基化状态,并计算适当的置信区间和/或预测区间。总体而言,MGMT-STP27是一个用于MGMT分类的稳健模型,独立于肿瘤类型,适用于单样本预测。