Maragno Emanuele, Ricchizzi Sarah, Winter Nils Ralf, Hellwig Sönke Josua, Stummer Walter, Hahn Tim, Holling Markus
Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1 A, 48149, Münster, Germany.
Institute for Translational Psychiatry, University of Münster, Münster, Germany.
Acta Neurochir (Wien). 2025 Feb 24;167(1):52. doi: 10.1007/s00701-025-06441-7.
Machine Learning (ML) has become an essential tool for analyzing biomedical data, facilitating the prediction of treatment outcomes and patient survival. However, the effectiveness of ML models heavily relies on both the choice of algorithms and the quality of the input data. In this study, we aimed to develop a novel predictive model to estimate individual survival for patients diagnosed with glioblastoma (GBM), focusing on key variables such as O6-Methylguanine-DNA Methyltransferase (MGMT) methylation status, age, and sex.
To identify the optimal approach, we utilized retrospective data from 218 patients treated at our brain tumor center. The performance of the ML models was evaluated within repeated tenfold regression. The pipeline comprised five regression estimators, including both linear and non-linear algorithms. Permutation feature importance highlighted the feature with the most significant impact on the model. Statistical significance was assessed using a permutation test procedure.
The best machine learning algorithm achieved a mean absolute error (MAE) of 12.65 (SD = ± 2.18) and an explained variance (EV) of 7% (SD = ± 1.8%) with p < 0.001. Linear algorithms led to more accurate predictions than non-linear estimators. Feature importance testing indicated that age and positive MGMT-methylation influenced the predictions the most.
In summary, here we provide a novel approach allowing to predict GBM patient's survival in months solely based on key parameters such as age, sex and MGMT-methylation status and underscores MGMT-methylation status as key prognostic factor for GBM patients survival.
机器学习(ML)已成为分析生物医学数据、促进治疗结果和患者生存预测的重要工具。然而,ML模型的有效性在很大程度上依赖于算法的选择和输入数据的质量。在本研究中,我们旨在开发一种新型预测模型,以估计胶质母细胞瘤(GBM)患者的个体生存期,重点关注关键变量,如O6-甲基鸟嘌呤-DNA甲基转移酶(MGMT)甲基化状态、年龄和性别。
为了确定最佳方法,我们利用了在我们脑肿瘤中心接受治疗的218例患者的回顾性数据。ML模型的性能在重复十折回归中进行评估。该流程包括五个回归估计器,包括线性和非线性算法。排列特征重要性突出了对模型影响最大的特征。使用排列检验程序评估统计学显著性。
最佳机器学习算法的平均绝对误差(MAE)为12.65(标准差=±2.18),解释方差(EV)为7%(标准差=±1.8%),p<0.001。线性算法比非线性估计器能产生更准确的预测。特征重要性测试表明,年龄和MGMT甲基化阳性对预测的影响最大。
总之,我们在此提供了一种新颖的方法,仅基于年龄、性别和MGMT甲基化状态等关键参数就能预测GBM患者以月为单位的生存期,并强调MGMT甲基化状态是GBM患者生存的关键预后因素。