Suppr超能文献

基于共振能量转移的G蛋白偶联受体研究方法。

Resonance Energy Transfer-Based Approaches to Study GPCRs.

作者信息

Ayoub Mohammed Akli

机构信息

Biologie et Bioinformatique des Systèmes de Signalisation, Institut National de la Recherche Agronomique, UMR85, Unité Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Nouzilly, France; LE STUDIUM(®) Loire Valley Institute for Advanced Studies, Orléans, France.

出版信息

Methods Cell Biol. 2016;132:255-92. doi: 10.1016/bs.mcb.2015.10.008. Epub 2015 Dec 24.

Abstract

Since their discovery, G protein-coupled receptors (GPCRs) constitute one of the most studied proteins leading to important discoveries and perspectives in terms of their biology and implication in physiology and pathophysiology. This is mostly linked to the remarkable advances in the development and application of the biophysical resonance energy transfer (RET)-based approaches, including bioluminescence and fluorescence resonance energy transfer (BRET and FRET, respectively). Indeed, BRET and FRET have been extensively applied to study different aspects of GPCR functioning such as their activation and regulation either statically or dynamically, in real-time and intact cells. Consequently, our view on GPCRs has considerably changed opening new challenges for the study of GPCRs in their native tissues in the aim to get more knowledge on how these receptors control the biological responses. Moreover, the technological aspect of this field of research promises further developments for robust and reliable new RET-based assays that may be compatible with high-throughput screening as well as drug discovery programs.

摘要

自被发现以来,G蛋白偶联受体(GPCRs)一直是研究最多的蛋白质之一,在其生物学以及在生理和病理生理学中的作用方面带来了重要发现和前景。这主要与基于生物物理共振能量转移(RET)的方法(包括生物发光和荧光共振能量转移(分别为BRET和FRET))的开发和应用取得的显著进展有关。事实上,BRET和FRET已被广泛应用于研究GPCR功能的不同方面,例如其在实时完整细胞中的静态或动态激活和调节。因此,我们对GPCRs的看法发生了很大变化,为在其天然组织中研究GPCRs带来了新的挑战,目的是更深入了解这些受体如何控制生物反应。此外,该研究领域的技术层面有望为强大且可靠的基于RET的新检测方法带来进一步发展,这些方法可能与高通量筛选以及药物发现计划兼容。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验