IEEE Trans Neural Netw Learn Syst. 2017 May;28(5):1192-1205. doi: 10.1109/TNNLS.2016.2526029. Epub 2016 Feb 24.
We show how two spiking neuron models encode continuous-time signals into spikes (action potentials, time-encoded pulses, or point processes) using a special form of sigma-delta modulation (SDM). In particular, we show that the well-known leaky integrate-and-fire (LIF) neuron and the simplified spike response model (SRM) neuron encode the continuous-time signals into spikes via a proposed asynchronous pulse SDM (APSDM) scheme. The encoder is clock free using level-crossing sampling with a single-level quantizer, unipolar signaling, differential coding, and pulse-shaping filters. The decoder, in the form of a low-pass filter or bandpass smoothing filter, can be fed with the spikes to reconstruct an estimate of the signal. The density of the spikes reflects the amplitude of the encoded signal. Numerical examples illustrating the concepts and the signaling efficiency of APSDM vis-à-vis SDM for comparable reconstruction accuracies are presented. We anticipate these results will facilitate the design of spiking neurons and spiking neural networks as well as cross fertilizations between the fields of neural coding and the SDM.
我们展示了两个尖峰神经元模型如何使用一种特殊形式的 sigma-delta 调制(SDM)将连续时间信号编码为尖峰(动作电位、时间编码脉冲或点过程)。具体来说,我们展示了著名的漏积分和放电(LIF)神经元和简化的尖峰响应模型(SRM)神经元如何通过提出的异步脉冲 SDM(APSDM)方案将连续时间信号编码为尖峰。该编码器使用具有单级量化器的电平交叉采样实现无时钟,采用单极性信号、差分编码和脉冲成形滤波器。解码器采用低通滤波器或带通平滑滤波器的形式,可以用尖峰来重构信号的估计值。尖峰的密度反映了编码信号的幅度。为了说明概念和 APSDM 相对于 SDM 的信号效率,我们给出了具有可比重建精度的数值示例。我们预计这些结果将有助于尖峰神经元和尖峰神经网络的设计,以及神经编码领域和 SDM 之间的交叉融合。