Suppr超能文献

关于神经元放电进行神经编码的事实与问题概述。

Overview of facts and issues about neural coding by spikes.

作者信息

Cessac Bruno, Paugam-Moisy Hélène, Viéville Thierry

机构信息

LJAD, Parc de Valrose, Nice, France.

出版信息

J Physiol Paris. 2010 Jan-Mar;104(1-2):5-18. doi: 10.1016/j.jphysparis.2009.11.002. Epub 2009 Nov 29.

Abstract

In the present overview, our wish is to demystify some aspects of coding with spike-timing, through a simple review of well-understood technical facts regarding spike coding. Our goal is a better understanding of the extent to which computing and modeling with spiking neuron networks might be biologically plausible and computationally efficient. We intentionally restrict ourselves to a deterministic implementation of spiking neuron networks and we consider that the dynamics of a network is defined by a non-stochastic mapping. By staying in this rather simple framework, we are able to propose results, formula and concrete numerical values, on several topics: (i) general time constraints, (ii) links between continuous signals and spike trains, (iii) spiking neuron networks parameter adjustment. Beside an argued review of several facts and issues about neural coding by spikes, we propose new results, such as a numerical evaluation of the most critical temporal variables that schedule the progress of realistic spike trains. When implementing spiking neuron networks, for biological simulation or computational purpose, it is important to take into account the indisputable facts here unfolded. This precaution could prevent one from implementing mechanisms that would be meaningless relative to obvious time constraints, or from artificially introducing spikes when continuous calculations would be sufficient and more simple. It is also pointed out that implementing a large-scale spiking neuron network is finally a simple task.

摘要

在本综述中,我们希望通过对有关脉冲编码的一些已被充分理解的技术事实进行简要回顾,来揭开脉冲时间编码某些方面的神秘面纱。我们的目标是更好地理解使用脉冲神经网络进行计算和建模在生物学上的合理性以及计算效率的程度。我们有意将自己限制在脉冲神经网络的确定性实现上,并认为网络的动力学是由非随机映射定义的。通过保持在这个相当简单的框架内,我们能够就几个主题提出结果、公式和具体数值:(i)一般时间约束,(ii)连续信号与脉冲序列之间的联系,(iii)脉冲神经网络参数调整。除了对有关脉冲神经编码的一些事实和问题进行有论据的回顾外,我们还提出了新的结果,例如对安排现实脉冲序列进展的最关键时间变量的数值评估。在实现脉冲神经网络时,无论是出于生物模拟还是计算目的,考虑这里所阐述的无可争议的事实都很重要。这种谨慎可以防止人们实施相对于明显时间约束而言毫无意义的机制,或者在连续计算就足够且更简单时人为地引入脉冲。还指出,实现大规模脉冲神经网络最终是一项简单的任务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验