Suppr超能文献

单个神经元放电序列的随机最优控制

Stochastic optimal control of single neuron spike trains.

作者信息

Iolov Alexandre, Ditlevsen Susanne, Longtin André

机构信息

Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON K1N 6N5, Canada. Department of Mathematical Sciences, University of Copenhagen, DK-1165 Copenhagen, Denmark.

出版信息

J Neural Eng. 2014 Aug;11(4):046004. doi: 10.1088/1741-2560/11/4/046004. Epub 2014 Jun 3.

Abstract

OBJECTIVE

External control of spike times in single neurons can reveal important information about a neuron's sub-threshold dynamics that lead to spiking, and has the potential to improve brain-machine interfaces and neural prostheses. The goal of this paper is the design of optimal electrical stimulation of a neuron to achieve a target spike train under the physiological constraint to not damage tissue.

APPROACH

We pose a stochastic optimal control problem to precisely specify the spike times in a leaky integrate-and-fire (LIF) model of a neuron with noise assumed to be of intrinsic or synaptic origin. In particular, we allow for the noise to be of arbitrary intensity. The optimal control problem is solved using dynamic programming when the controller has access to the voltage (closed-loop control), and using a maximum principle for the transition density when the controller only has access to the spike times (open-loop control).

MAIN RESULTS

We have developed a stochastic optimal control algorithm to obtain precise spike times. It is applicable in both the supra-threshold and sub-threshold regimes, under open-loop and closed-loop conditions and with an arbitrary noise intensity; the accuracy of control degrades with increasing intensity of the noise. Simulations show that our algorithms produce the desired results for the LIF model, but also for the case where the neuron dynamics are given by more complex models than the LIF model. This is illustrated explicitly using the Morris-Lecar spiking neuron model, for which an LIF approximation is first obtained from a spike sequence using a previously published method. We further show that a related control strategy based on the assumption that there is no noise performs poorly in comparison to our noise-based strategies. The algorithms are numerically intensive and may require efficiency refinements to achieve real-time control; in particular, the open-loop context is more numerically demanding than the closed-loop one.

SIGNIFICANCE

Our main contribution is the online feedback control of a noisy neuron through modulation of the input, taking into account physiological constraints on the control. A precise and robust targeting of neural activity based on stochastic optimal control has great potential for regulating neural activity in e.g. prosthetic applications and to improve our understanding of the basic mechanisms by which neuronal firing patterns can be controlled in vivo.

摘要

目标

对单个神经元的放电时间进行外部控制,可以揭示有关导致神经元放电的阈下动力学的重要信息,并且有可能改善脑机接口和神经假体。本文的目标是在不损伤组织的生理约束条件下,设计对神经元的最优电刺激,以实现目标放电序列。

方法

我们提出一个随机最优控制问题,以精确确定具有内在或突触起源噪声的神经元的泄漏积分发放(LIF)模型中的放电时间。特别地,我们允许噪声具有任意强度。当控制器能够获取电压时(闭环控制),使用动态规划求解最优控制问题;当控制器仅能获取放电时间时(开环控制),使用转移密度的最大值原理求解。

主要结果

我们开发了一种随机最优控制算法来获得精确的放电时间。它适用于阈上和阈下状态,开环和闭环条件下以及任意噪声强度;控制精度会随着噪声强度的增加而降低。模拟表明,我们的算法不仅对LIF模型产生了预期结果,而且对于神经元动力学由比LIF模型更复杂的模型给出的情况也适用。使用Morris-Lecar发放神经元模型明确说明了这一点,首先使用先前发表的方法从放电序列中获得LIF近似。我们进一步表明,与基于噪声的策略相比,基于无噪声假设的相关控制策略表现不佳。这些算法计算量很大,可能需要提高效率以实现实时控制;特别是,开环情况在数值上比闭环情况要求更高。

意义

我们的主要贡献是在考虑控制的生理约束条件下,通过调制输入对有噪声的神经元进行在线反馈控制。基于随机最优控制对神经活动进行精确且稳健的靶向,在例如假体应用中调节神经活动以及增进我们对体内控制神经元放电模式的基本机制的理解方面具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验