Attia Mohamed, Stepper Judith, Davies Gideon J, Brumer Harry
Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, Canada.
Department of Chemistry, University of York, UK.
FEBS J. 2016 May;283(9):1701-19. doi: 10.1111/febs.13696. Epub 2016 Mar 30.
The heteropolysaccharide xyloglucan (XyG) comprises up to one-quarter of the total carbohydrate content of terrestrial plant cell walls and, as such, represents a significant reservoir in the global carbon cycle. The complex composition of XyG requires a consortium of backbone-cleaving endo-xyloglucanases and side-chain cleaving exo-glycosidases for complete saccharification. The biochemical basis for XyG utilization by the model Gram-negative soil saprophytic bacterium Cellvibrio japonicus is incompletely understood, despite the recent characterization of associated side-chain cleaving exo-glycosidases. We present a detailed functional and structural characterization of a multimodular enzyme encoded by gene locus CJA_2477. The CJA_2477 gene product comprises an N-terminal glycoside hydrolase family 74 (GH74) endo-xyloglucanase module in train with two carbohydrate-binding modules (CBMs) from families 10 and 2 (CBM10 and CBM2). The GH74 catalytic domain generates Glc4 -based xylogluco-oligosaccharide (XyGO) substrates for downstream enzymes through an endo-dissociative mode of action. X-ray crystallography of the GH74 module, alone and in complex with XyGO products spanning the entire active site, revealed a broad substrate-binding cleft specifically adapted to XyG recognition, which is composed of two seven-bladed propeller domains characteristic of the GH74 family. The appended CBM10 and CBM2 members notably did not bind XyG, nor other soluble polysaccharides, and instead were specific cellulose-binding modules. Taken together, these data shed light on the first step of xyloglucan utilization by C. japonicus and expand the repertoire of GHs and CBMs for selective biomass analysis and utilization.
Structural data have been deposited in the RCSB protein database under the Protein Data Bank codes: 5FKR, 5FKS, 5FKT and 5FKQ.
杂多糖木葡聚糖(XyG)占陆地植物细胞壁总碳水化合物含量的四分之一,因此是全球碳循环中的一个重要储存库。XyG的复杂组成需要一组内切木葡聚糖酶和外切糖苷酶来进行完全糖化。尽管最近对相关的外切糖苷酶进行了表征,但对于革兰氏阴性土壤腐生细菌日本纤维弧菌利用XyG的生化基础仍不完全清楚。我们对基因座CJA_2477编码的多模块酶进行了详细的功能和结构表征。CJA_2477基因产物包括一个N端糖苷水解酶家族74(GH74)内切木葡聚糖酶模块,后面跟着来自家族10和2的两个碳水化合物结合模块(CBM)(CBM10和CBM2)。GH74催化结构域通过内切解离作用模式为下游酶生成基于Glc4的木葡寡糖(XyGO)底物。GH74模块单独以及与跨越整个活性位点的XyGO产物形成复合物的X射线晶体学分析表明,有一个宽的底物结合裂隙,特别适合XyG识别,它由GH74家族特有的两个七叶螺旋桨结构域组成。附加的CBM10和CBM2成员明显不结合XyG,也不结合其他可溶性多糖,而是特异性的纤维素结合模块。综上所述,这些数据揭示了日本纤维弧菌利用木葡聚糖的第一步,并扩展了用于选择性生物质分析和利用的糖苷水解酶和碳水化合物结合模块的种类。
结构数据已存入RCSB蛋白质数据库,蛋白质数据银行代码为:5FKR、5FKS、5FKT和5FKQ。