Department of Biological Sciences, University of Maryland, Baltimore County, MD, USA.
Michael Smith Laboratories, University of British Columbia, Vancouver, Canada.
Environ Microbiol. 2017 Dec;19(12):5025-5039. doi: 10.1111/1462-2920.13959. Epub 2017 Dec 7.
Lignocellulose degradation is central to the carbon cycle and renewable biotechnologies. The xyloglucan (XyG), β(1→3)/β(1→4) mixed-linkage glucan (MLG) and β(1→3) glucan components of lignocellulose represent significant carbohydrate energy sources for saprophytic microorganisms. The bacterium Cellvibrio japonicus has a robust capacity for plant polysaccharide degradation, due to a genome encoding a large contingent of Carbohydrate-Active enZymes (CAZymes), many of whose specific functions remain unknown. Using a comprehensive genetic and biochemical approach, we have delineated the physiological roles of the four C. japonicus glycoside hydrolase family 3 (GH3) members on diverse β-glucans. Despite high protein sequence similarity and partially overlapping activity profiles on disaccharides, these β-glucosidases are not functionally equivalent. Bgl3A has a major role in MLG and sophorose utilization, and supports β(1→3) glucan utilization, while Bgl3B underpins cellulose utilization and supports MLG utilization. Bgl3C drives β(1→3) glucan utilization. Finally, Bgl3D is the crucial β-glucosidase for XyG utilization. This study not only sheds the light on the metabolic machinery of C. japonicus, but also expands the repertoire of characterized CAZymes for future deployment in biotechnological applications. In particular, the precise functional analysis provided here serves as a reference for informed bioinformatics on the genomes of other Cellvibrio and related species.
木质纤维素的降解是碳循环和可再生生物技术的核心。木质纤维素中的木葡聚糖 (XyG)、β(1→3)/β(1→4) 混合键连接葡聚糖 (MLG) 和 β(1→3) 葡聚糖是腐生微生物重要的碳水化合物能量来源。黄杆菌属(Cellvibrio)的日本溶纤维丁酸弧菌(Cellvibrio japonicus)具有很强的植物多糖降解能力,这是由于其基因组编码了大量的碳水化合物活性酶(CAZymes),其中许多的特定功能仍然未知。我们使用综合的遗传和生化方法,阐明了日本溶纤维丁酸弧菌中四个糖苷水解酶家族 3(GH3)成员在不同 β-葡聚糖上的生理作用。尽管这些β-葡萄糖苷酶的蛋白质序列高度相似,并且在二糖上的活性谱部分重叠,但它们的功能并不完全相同。Bgl3A 在 MLG 和棉子糖利用中起主要作用,并支持 β(1→3) 葡聚糖的利用,而 Bgl3B 则为纤维素利用提供支撑,并支持 MLG 的利用。Bgl3C 驱动 β(1→3) 葡聚糖的利用。最后,Bgl3D 是利用 XyG 的关键β-葡萄糖苷酶。这项研究不仅揭示了日本溶纤维丁酸弧菌的代谢机制,还扩展了经过鉴定的 CAZymes repertoire,以供未来在生物技术应用中部署。特别是,这里提供的精确功能分析为其他黄杆菌属和相关物种的基因组提供了有针对性的生物信息学参考。