Suppr超能文献

全面功能表征来自日本纤维弧菌的糖苷水解酶家族 3 酶揭示了其在生物质糖化中的独特代谢作用。

Comprehensive functional characterization of the glycoside hydrolase family 3 enzymes from Cellvibrio japonicus reveals unique metabolic roles in biomass saccharification.

机构信息

Department of Biological Sciences, University of Maryland, Baltimore County, MD, USA.

Michael Smith Laboratories, University of British Columbia, Vancouver, Canada.

出版信息

Environ Microbiol. 2017 Dec;19(12):5025-5039. doi: 10.1111/1462-2920.13959. Epub 2017 Dec 7.

Abstract

Lignocellulose degradation is central to the carbon cycle and renewable biotechnologies. The xyloglucan (XyG), β(1→3)/β(1→4) mixed-linkage glucan (MLG) and β(1→3) glucan components of lignocellulose represent significant carbohydrate energy sources for saprophytic microorganisms. The bacterium Cellvibrio japonicus has a robust capacity for plant polysaccharide degradation, due to a genome encoding a large contingent of Carbohydrate-Active enZymes (CAZymes), many of whose specific functions remain unknown. Using a comprehensive genetic and biochemical approach, we have delineated the physiological roles of the four C. japonicus glycoside hydrolase family 3 (GH3) members on diverse β-glucans. Despite high protein sequence similarity and partially overlapping activity profiles on disaccharides, these β-glucosidases are not functionally equivalent. Bgl3A has a major role in MLG and sophorose utilization, and supports β(1→3) glucan utilization, while Bgl3B underpins cellulose utilization and supports MLG utilization. Bgl3C drives β(1→3) glucan utilization. Finally, Bgl3D is the crucial β-glucosidase for XyG utilization. This study not only sheds the light on the metabolic machinery of C. japonicus, but also expands the repertoire of characterized CAZymes for future deployment in biotechnological applications. In particular, the precise functional analysis provided here serves as a reference for informed bioinformatics on the genomes of other Cellvibrio and related species.

摘要

木质纤维素的降解是碳循环和可再生生物技术的核心。木质纤维素中的木葡聚糖 (XyG)、β(1→3)/β(1→4) 混合键连接葡聚糖 (MLG) 和 β(1→3) 葡聚糖是腐生微生物重要的碳水化合物能量来源。黄杆菌属(Cellvibrio)的日本溶纤维丁酸弧菌(Cellvibrio japonicus)具有很强的植物多糖降解能力,这是由于其基因组编码了大量的碳水化合物活性酶(CAZymes),其中许多的特定功能仍然未知。我们使用综合的遗传和生化方法,阐明了日本溶纤维丁酸弧菌中四个糖苷水解酶家族 3(GH3)成员在不同 β-葡聚糖上的生理作用。尽管这些β-葡萄糖苷酶的蛋白质序列高度相似,并且在二糖上的活性谱部分重叠,但它们的功能并不完全相同。Bgl3A 在 MLG 和棉子糖利用中起主要作用,并支持 β(1→3) 葡聚糖的利用,而 Bgl3B 则为纤维素利用提供支撑,并支持 MLG 的利用。Bgl3C 驱动 β(1→3) 葡聚糖的利用。最后,Bgl3D 是利用 XyG 的关键β-葡萄糖苷酶。这项研究不仅揭示了日本溶纤维丁酸弧菌的代谢机制,还扩展了经过鉴定的 CAZymes repertoire,以供未来在生物技术应用中部署。特别是,这里提供的精确功能分析为其他黄杆菌属和相关物种的基因组提供了有针对性的生物信息学参考。

相似文献

3
Systems analysis of the glycoside hydrolase family 18 enzymes from characterizes essential chitin degradation functions.
J Biol Chem. 2018 Mar 9;293(10):3849-3859. doi: 10.1074/jbc.RA117.000849. Epub 2018 Jan 24.
7
New Family of Carbohydrate-Binding Modules Defined by a Galactosyl-Binding Protein Module from a Cellvibrio japonicus Endo-Xyloglucanase.
Appl Environ Microbiol. 2021 Feb 12;87(5):e0263420. doi: 10.1128/AEM.02634-20. Epub 2020 Dec 18.
9
Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus.
World J Microbiol Biotechnol. 2016 Jul;32(7):121. doi: 10.1007/s11274-016-2068-6. Epub 2016 Jun 4.
10
A complex gene locus enables xyloglucan utilization in the model saprophyte Cellvibrio japonicus.
Mol Microbiol. 2014 Oct;94(2):418-33. doi: 10.1111/mmi.12776. Epub 2014 Sep 17.

引用本文的文献

1
A Multiplexing Activity-Based Protein-Profiling Platform for Dissection of a Native Bacterial Xyloglucan-Degrading System.
ACS Cent Sci. 2023 Nov 24;9(12):2306-2314. doi: 10.1021/acscentsci.3c00831. eCollection 2023 Dec 27.
2
Conversion of the free Cellvibrio japonicus xyloglucan degradation system to the cellulosomal mode.
Appl Microbiol Biotechnol. 2022 Sep;106(17):5495-5509. doi: 10.1007/s00253-022-12072-0. Epub 2022 Jul 23.
3
Biocatalytic quantification of α-glucan in marine particulate organic matter.
Microbiologyopen. 2022 Jun;11(3):e1289. doi: 10.1002/mbo3.1289.
4
Disentangling the genetic basis of rhizosphere microbiome assembly in tomato.
Nat Commun. 2022 Jun 16;13(1):3228. doi: 10.1038/s41467-022-30849-9.
5
Unifying themes and distinct features of carbon and nitrogen assimilation by polysaccharide-degrading bacteria: a summary of four model systems.
Appl Microbiol Biotechnol. 2021 Nov;105(21-22):8109-8127. doi: 10.1007/s00253-021-11614-2. Epub 2021 Oct 6.
8
Laminarin is a major molecule in the marine carbon cycle.
Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6599-6607. doi: 10.1073/pnas.1917001117. Epub 2020 Mar 13.
9
Complete Genome Sequences of Cellvibrio japonicus Strains with Improved Growth When Using α-Diglucosides.
Microbiol Resour Announc. 2019 Oct 31;8(44):e01077-19. doi: 10.1128/MRA.01077-19.
10
Substrate specificity, regiospecificity, and processivity in glycoside hydrolase family 74.
J Biol Chem. 2019 Sep 6;294(36):13233-13247. doi: 10.1074/jbc.RA119.009861. Epub 2019 Jul 19.

本文引用的文献

1
1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life.
Nat Biotechnol. 2017 Jul;35(7):676-683. doi: 10.1038/nbt.3886. Epub 2017 Jun 12.
2
Metagenomics and CAZyme Discovery.
Methods Mol Biol. 2017;1588:255-277. doi: 10.1007/978-1-4939-6899-2_20.
3
An alternative polysaccharide uptake mechanism of marine bacteria.
ISME J. 2017 Jul;11(7):1640-1650. doi: 10.1038/ismej.2017.26. Epub 2017 Mar 21.
4
Polysaccharide Utilization Loci: Fueling Microbial Communities.
J Bacteriol. 2017 Jul 11;199(15). doi: 10.1128/JB.00860-16. Print 2017 Aug 1.
6
Custom fabrication of biomass containment devices using 3-D printing enables bacterial growth analyses with complex insoluble substrates.
J Microbiol Methods. 2016 Nov;130:136-143. doi: 10.1016/j.mimet.2016.09.013. Epub 2016 Sep 21.
7
Recent structural insights into the enzymology of the ubiquitous plant cell wall glycan xyloglucan.
Curr Opin Struct Biol. 2016 Oct;40:43-53. doi: 10.1016/j.sbi.2016.07.005. Epub 2016 Jul 28.
9
Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus.
World J Microbiol Biotechnol. 2016 Jul;32(7):121. doi: 10.1007/s11274-016-2068-6. Epub 2016 Jun 4.
10
Structural Diversity and Function of Xyloglucan Sidechain Substituents.
Plants (Basel). 2014 Nov 13;3(4):526-42. doi: 10.3390/plants3040526.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验