Suppr超能文献

使用可生物还原脂质纳米颗粒高效递送基因组编辑蛋白。

Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles.

作者信息

Wang Ming, Zuris John A, Meng Fantao, Rees Holly, Sun Shuo, Deng Pu, Han Yong, Gao Xue, Pouli Dimitra, Wu Qi, Georgakoudi Irene, Liu David R, Xu Qiaobing

机构信息

Department of Biomedical Engineering, Tufts University, Medford, MA 02155;

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138;

出版信息

Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):2868-73. doi: 10.1073/pnas.1520244113. Epub 2016 Feb 29.

Abstract

A central challenge to the development of protein-based therapeutics is the inefficiency of delivery of protein cargo across the mammalian cell membrane, including escape from endosomes. Here we report that combining bioreducible lipid nanoparticles with negatively supercharged Cre recombinase or anionic Cas9:single-guide (sg)RNA complexes drives the electrostatic assembly of nanoparticles that mediate potent protein delivery and genome editing. These bioreducible lipids efficiently deliver protein cargo into cells, facilitate the escape of protein from endosomes in response to the reductive intracellular environment, and direct protein to its intracellular target sites. The delivery of supercharged Cre protein and Cas9:sgRNA complexed with bioreducible lipids into cultured human cells enables gene recombination and genome editing with efficiencies greater than 70%. In addition, we demonstrate that these lipids are effective for functional protein delivery into mouse brain for gene recombination in vivo. Therefore, the integration of this bioreducible lipid platform with protein engineering has the potential to advance the therapeutic relevance of protein-based genome editing.

摘要

基于蛋白质的治疗药物开发面临的一个核心挑战是蛋白质货物跨哺乳动物细胞膜递送效率低下,包括从内体逃逸。在此,我们报告将生物可还原脂质纳米颗粒与带负电的超荷化Cre重组酶或阴离子型Cas9:单导向(sg)RNA复合物相结合,可驱动纳米颗粒的静电组装,从而介导高效的蛋白质递送和基因组编辑。这些生物可还原脂质能有效地将蛋白质货物递送至细胞内,响应细胞内的还原环境促进蛋白质从内体逃逸,并将蛋白质导向其细胞内靶位点。将超荷化Cre蛋白以及与生物可还原脂质复合的Cas9:sgRNA递送至培养的人类细胞中,可实现效率超过70%的基因重组和基因组编辑。此外,我们证明这些脂质对于将功能性蛋白质递送至小鼠脑内以进行体内基因重组是有效的。因此,将这种生物可还原脂质平台与蛋白质工程相结合,有潜力提升基于蛋白质的基因组编辑的治疗相关性。

相似文献

1
Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles.
Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):2868-73. doi: 10.1073/pnas.1520244113. Epub 2016 Feb 29.
2
Fast and Efficient CRISPR/Cas9 Genome Editing In Vivo Enabled by Bioreducible Lipid and Messenger RNA Nanoparticles.
Adv Mater. 2019 Aug;31(33):e1902575. doi: 10.1002/adma.201902575. Epub 2019 Jun 19.
3
Combinatorial library of chalcogen-containing lipidoids for intracellular delivery of genome-editing proteins.
Biomaterials. 2018 Sep;178:652-662. doi: 10.1016/j.biomaterials.2018.03.011. Epub 2018 Mar 8.
4
Integrating Combinatorial Lipid Nanoparticle and Chemically Modified Protein for Intracellular Delivery and Genome Editing.
Acc Chem Res. 2019 Mar 19;52(3):665-675. doi: 10.1021/acs.accounts.8b00493. Epub 2018 Dec 26.
5
Cholesterol-rich lipid-mediated nanoparticles boost of transfection efficiency, utilized for gene editing by CRISPR-Cas9.
Int J Nanomedicine. 2019 Jun 11;14:4353-4366. doi: 10.2147/IJN.S199104. eCollection 2019.
9
Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo.
Nat Biotechnol. 2015 Jan;33(1):73-80. doi: 10.1038/nbt.3081. Epub 2014 Oct 30.
10
Synthesis and Evaluation of pH-Sensitive Multifunctional Lipids for Efficient Delivery of CRISPR/Cas9 in Gene Editing.
Bioconjug Chem. 2019 Mar 20;30(3):667-678. doi: 10.1021/acs.bioconjchem.8b00856. Epub 2019 Jan 18.

引用本文的文献

1
CRISPR/Cas9 in colorectal cancer: Revolutionizing precision oncology through genome editing and targeted therapeutics.
Iran J Basic Med Sci. 2025;28(10):1279-1300. doi: 10.22038/ijbms.2025.87531.18902.
2
Viral and nonviral nanocarriers for CRISPR-based gene editing.
Nano Res. 2024 Oct;17(10):8904-8925. doi: 10.1007/s12274-024-6748-5. Epub 2024 Jun 20.
4
Lipid nanoparticles: a promising tool for nucleic acid delivery in cancer immunotherapy.
Med Oncol. 2025 Aug 6;42(9):409. doi: 10.1007/s12032-025-02939-3.
6
Self-degradable "gemini-like" ionizable lipid-mediated delivery of siRNA for subcellular-specific gene therapy of hepatic diseases.
Acta Pharm Sin B. 2025 Jun;15(6):2867-2883. doi: 10.1016/j.apsb.2025.04.003. Epub 2025 Apr 6.
7
CRISPR/Cas9 Delivery Systems to Enhance Gene Editing Efficiency.
Int J Mol Sci. 2025 May 6;26(9):4420. doi: 10.3390/ijms26094420.
8
Efficient Direct Cytosolic Protein Delivery via Protein-Linker Co-engineering.
ACS Appl Mater Interfaces. 2025 May 14;17(19):27858-27870. doi: 10.1021/acsami.5c02360. Epub 2025 Apr 30.
9
In Vivo Cytosolic Delivery of Biomolecules into Neurons for Super-Resolution Imaging and Genome Modification.
Adv Sci (Weinh). 2025 Jul;12(25):e2501033. doi: 10.1002/advs.202501033. Epub 2025 Apr 26.
10
Exploring Advanced CRISPR Delivery Technologies for Therapeutic Genome Editing.
Small Sci. 2024 Jul 25;4(10):2400192. doi: 10.1002/smsc.202400192. eCollection 2024 Oct.

本文引用的文献

1
Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection.
J Biotechnol. 2015 Aug 20;208:44-53. doi: 10.1016/j.jbiotec.2015.04.024. Epub 2015 May 21.
2
Efficient intracellular delivery of native proteins.
Cell. 2015 Apr 23;161(3):674-690. doi: 10.1016/j.cell.2015.03.028.
3
Small molecule-triggered Cas9 protein with improved genome-editing specificity.
Nat Chem Biol. 2015 May;11(5):316-8. doi: 10.1038/nchembio.1793. Epub 2015 Apr 6.
5
Therapeutic genome editing: prospects and challenges.
Nat Med. 2015 Feb;21(2):121-31. doi: 10.1038/nm.3793.
6
Genome editing. The new frontier of genome engineering with CRISPR-Cas9.
Science. 2014 Nov 28;346(6213):1258096. doi: 10.1126/science.1258096.
7
Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo.
Nat Biotechnol. 2015 Jan;33(1):73-80. doi: 10.1038/nbt.3081. Epub 2014 Oct 30.
8
Reactive oxygen species-responsive protein modification and its intracellular delivery for targeted cancer therapy.
Angew Chem Int Ed Engl. 2014 Dec 1;53(49):13444-8. doi: 10.1002/anie.201407234. Epub 2014 Oct 6.
9
Genome engineering: the next genomic revolution.
Nat Methods. 2014 Oct;11(10):1009-11. doi: 10.1038/nmeth.3113.
10
Stimuli-responsive nanomaterials for therapeutic protein delivery.
J Control Release. 2014 Nov 28;194:1-19. doi: 10.1016/j.jconrel.2014.08.015. Epub 2014 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验