Wang Chenran, Chen Song, Yeo Syn, Karsli-Uzunbas Gizem, White Eileen, Mizushima Noboru, Virgin Herbert W, Guan Jun-Lin
Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267.
Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903.
J Cell Biol. 2016 Feb 29;212(5):545-60. doi: 10.1083/jcb.201507023.
Autophagy plays important roles in many biological processes, but our understanding of the mechanisms regulating stem cells by autophagy is limited. Interpretations of earlier studies of autophagy using knockouts of single genes are confounded by accumulating evidence for other functions of many autophagy genes. Here, we show that, in contrast to Fip200 deletion, inhibition of autophagy by deletion of Atg5, Atg16L1, or Atg7 does not impair the maintenance and differentiation of postnatal neural stem cells (NSCs). Only Fip200 deletion, but not Atg5, Atg16L1, or Atg7 deletion, caused p62/sequestome1 aggregates to accumulate in NSCs. Fip200 and p62 double conditional knockout mice demonstrated that p62 aggregate formation triggers aberrant superoxide increases by impairing superoxide dismutase functions. By comparing the inhibition of autophagy by deletion of Atg5, Atg16L1, or Atg7 with Fip200 deletion, we revealed a critical role of increased p62 in determining the fate of autophagy-deficient NSCs through intracellular superoxide control.
自噬在许多生物学过程中发挥着重要作用,但我们对自噬调节干细胞机制的了解有限。早期使用单个基因敲除进行的自噬研究,其解释因许多自噬基因的其他功能的证据不断积累而变得复杂。在这里,我们表明,与Fip200缺失相反,通过缺失Atg5、Atg16L1或Atg7来抑制自噬,不会损害出生后神经干细胞(NSCs)的维持和分化。只有Fip200缺失,而不是Atg5、Atg16L1或Atg7缺失,会导致p62/聚集体在神经干细胞中积累。Fip200和p62双条件敲除小鼠表明,p62聚集体的形成通过损害超氧化物歧化酶功能触发异常的超氧化物增加。通过比较缺失Atg5、Atg16L1或Atg7与缺失Fip200对自噬的抑制作用,我们揭示了增加的p62在通过细胞内超氧化物控制决定自噬缺陷神经干细胞命运中的关键作用。