School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
Translational Research Institute of Henan Provincial People's Hospital and People''s Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450053, China.
Zool Res. 2024 Jul 18;45(4):937-950. doi: 10.24272/j.issn.2095-8137.2024.021.
Autophagy plays a pivotal role in diverse biological processes, including the maintenance and differentiation of neural stem cells (NSCs). Interestingly, while complete deletion of severely impairs NSC maintenance and differentiation, inhibiting canonical autophagy via deletion of core genes, such as , , and , or blockade of canonical interactions between FIP200 and ATG13 (designated as FIP200-4A mutant or FIP200 KI) does not produce comparable detrimental effects. This highlights the likely critical involvement of the non-canonical functions of FIP200, the mechanisms of which have remained elusive. Here, utilizing genetic mouse models, we demonstrated that FIP200 mediates non-canonical autophagic degradation of p62/sequestome1, primarily via TAX1BP1 in NSCs. Conditional deletion of in conditional knock-in (cKI) mice led to NSC deficiency, resembling the conditional knockout (cKO) mouse phenotype. Notably, reintroducing wild-type TAX1BP1 not only restored the maintenance of NSCs derived from -knockout cKI mice but also led to a marked reduction in p62 aggregate accumulation. Conversely, a TAX1BP1 mutant incapable of binding to FIP200 or NBR1/p62 failed to achieve this restoration. Furthermore, conditional deletion of in cKO mice exacerbated NSC deficiency and p62 aggregate accumulation compared to cKO mice. Collectively, these findings illustrate the essential role of the FIP200-TAX1BP1 axis in mediating the non-canonical autophagic degradation of p62 aggregates towards NSC maintenance and function, presenting novel therapeutic targets for neurodegenerative diseases.
自噬在多种生物学过程中发挥着关键作用,包括神经干细胞(NSC)的维持和分化。有趣的是,虽然完全缺失 严重损害了 NSC 的维持和分化,但通过缺失核心基因(如 、 和 )或阻断 FIP200 和 ATG13 之间的经典相互作用(称为 FIP200-4A 突变体或 FIP200 KI)来抑制经典自噬,并不会产生类似的有害影响。这凸显了 FIP200 的非经典功能的可能关键作用,但其机制仍不清楚。在这里,我们利用遗传小鼠模型证明,FIP200 通过 TAX1BP1 在 NSCs 中介导 p62/自噬体 1 的非经典自噬降解。在条件敲入(cKI)小鼠中条件性缺失 导致 NSC 缺失,类似于 条件性敲除(cKO)小鼠表型。值得注意的是,野生型 TAX1BP1 的重新引入不仅恢复了源自 -敲除的 NSCs 的维持,而且还导致 p62 聚集体积累明显减少。相反,不能与 FIP200 或 NBR1/p62 结合的 TAX1BP1 突变体无法实现这种恢复。此外,与 cKO 小鼠相比,在 cKO 小鼠中条件性缺失 加剧了 NSC 缺失和 p62 聚集体积累。总之,这些发现说明了 FIP200-TAX1BP1 轴在介导 p62 聚集体的非经典自噬降解以维持和发挥 NSC 功能方面的重要作用,为神经退行性疾病提供了新的治疗靶点。