Korsten Koos, Blanken Maarten O, Nibbelke Elisabeth E, Moons Karel G M, Bont Louis
Division of Paediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, The Netherlands.
Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.
Early Hum Dev. 2016 Apr;95:35-40. doi: 10.1016/j.earlhumdev.2016.01.020. Epub 2016 Feb 27.
New vaccines and RSV therapeutics have been developed in the past decade. With approval of these new pharmaceuticals on the horizon, new challenges lie ahead in selecting the appropriate target population. We aimed to improve a previously published prediction model for prediction of RSV-hospitalization within the first year of life.
Two consecutive prospective multicenter birth cohort studies were performed from June 2008 until February 2015. The first cohort (RISK-I, n=2524, 2008-2011) was used to update the existing model. The updated model was subsequently validated in the RISK-II cohort (n=1564, 2011-2015). We used the TRIPOD criteria for transparent reporting.
181 infants (n=127 in RISK-I, n=54 in RISK-II) were hospitalized for RSV within their first year of life. The updated model included the following predictors; day care attendance and/or siblings (OR: 5.3; 95% CI 2.8-10.1), birth between Aug. 14th and Dec. 1st (OR: 2.4; 1.8-3.2), neonatal respiratory support (OR 2.2; 1.6-3.0), breastfeeding ≤4 months (OR 1.6; 1.2-2.2) and maternal atopic constitution (OR 1.5; 1.1-2.1). The updated models' discrimination was superior to the original model in the RISK-II cohort (AUROC 0.72 95% CI 0.65-0.78 versus AUROC 0.66, 95% CI 0.60-0.73, respectively). The updated model was translated into a simple nomogram to be able to distinguish infants with high versus low risk of RSV-hospitalization.
We developed and validated a clinical prediction model to be able to predict RSV-hospitalization in preterm infants born within 32-35 weeks gestational age. A simple nomogram was developed to target RSV therapeutics to those children who will benefit the most.
在过去十年中开发了新型呼吸道合胞病毒(RSV)疫苗和治疗药物。随着这些新药即将获批,在选择合适的目标人群方面面临新的挑战。我们旨在改进先前发表的用于预测1岁以内RSV住院情况的预测模型。
从2008年6月至2015年2月进行了两项连续的前瞻性多中心出生队列研究。第一个队列(RISK - I,n = 2524,2008 - 2011年)用于更新现有模型。随后在RISK - II队列(n = 1564,2011 - 2015年)中对更新后的模型进行验证。我们使用TRIPOD标准进行透明报告。
181名婴儿(RISK - I队列中有127名,RISK - II队列中有54名)在1岁以内因RSV住院。更新后的模型包括以下预测因素:日托出勤和/或有兄弟姐妹(比值比:5.3;95%置信区间2.8 - 10.1)、8月14日至12月1日之间出生(比值比:2.4;1.8 - 3.2)、新生儿呼吸支持(比值比2.2;1.6 - 3.0)、母乳喂养≤4个月(比值比1.6;1.2 - 2.2)和母亲特应性体质(比值比1.5;1.1 - 2.1)。在RISK - II队列中,更新后模型的区分度优于原始模型(分别为曲线下面积0.72,95%置信区间0.65 - 0.78与曲线下面积0.66,95%置信区间0.60 - 0.73)。更新后的模型被转化为一个简单的列线图,以便能够区分RSV住院高风险和低风险的婴儿。
我们开发并验证了一种临床预测模型,能够预测孕龄在32 - 35周的早产儿的RSV住院情况。开发了一个简单的列线图,以便将RSV治疗药物靶向那些将最受益的儿童。