State Key Laboratory of Materials-Oriented Chemical Engineering, School of Materials Science and Engineering, Nanjing Tech University , Nanjing 210009, People's Republic of China.
ACS Appl Mater Interfaces. 2016 Mar;8(12):7977-90. doi: 10.1021/acsami.5b12378. Epub 2016 Mar 15.
Porous Fe3O4/C composite nanofoils, characterized by a thickness of ∼20 nm and with ∼8 nm open pores and ∼5 nm Fe3O4 nanoparticles embedded in the carbon matrix, were prepared for the first time using Na-citrate to mediate the growth of hexagonal Fe-ethylene glycolate nanosheets and subsequently annealing them at 350 °C in N2. It has been found that the Fe-ethylene glycolate nanosheets can be effectively slimmed by increasing the concentration of Na-citrate, and the microstructures of Fe3O4/C nanocomposites may be tailored by the annealing temperature. When tested as the anode materials in LIBs, the Fe3O4/C nanofoils obtained after annealing at 350 °C were found to exhibit superior electrochemical performance due to its optimal microstructure, featured by a reversible capacity of 1314.4 mAh g(-1) at 0.4 A g(-1) over 100 cycles, 1034.2 mAh g(-1) at 1 A g(-1), and 686.4 mAh g(-1) at 5 A g(-1) after 500 cycles, whereas the annealing treatments at 450 and 550 °C render the Fe3O4/C nanocomposites with the inferior electrochemical performances as a result of shrinking porous microstructures and coarsening of Fe3O4 nanoparticles in the carbon matrix. With a particle-size control model proposed herein, the cycle discharging behaviors of the Fe3O4/C nanocomposites with different microstructures are well explained from the perspective of the local confinement of Fe3O4 nanoparticles inside the carbon matrix and their evolution in size and composite microstructure during the charge/discharge cycling.
多孔 Fe3O4/C 复合纳米箔,厚度约为 20nm,具有 8nm 的开放孔和约 5nm 的 Fe3O4 纳米颗粒嵌入在碳基质中,首次使用 Na-柠檬酸盐来介导六方 Fe-乙二酸盐纳米片的生长,并随后在 350°C 的 N2 中退火。研究发现,通过增加 Na-柠檬酸盐的浓度可以有效地使 Fe-乙二酸盐纳米片变细,并且通过退火温度可以对 Fe3O4/C 纳米复合材料的微结构进行剪裁。当将其作为 LIBs 的阳极材料进行测试时,发现在 350°C 退火得到的 Fe3O4/C 纳米箔由于其最佳的微观结构而表现出优异的电化学性能,其在 0.4A g-1 的可逆容量为 1314.4mAh g-1,在 100 个循环后,1A g-1 时为 1034.2mAh g-1,在 500 个循环后,5A g-1 时为 686.4mAh g-1,而在 450 和 550°C 下的退火处理导致 Fe3O4/C 纳米复合材料由于多孔微观结构的收缩和碳基质中 Fe3O4 纳米颗粒的粗化而具有较差的电化学性能。通过提出的粒径控制模型,从碳基质中 Fe3O4 纳米颗粒的局部限制及其在充放电循环过程中尺寸和复合微观结构的演变的角度,很好地解释了具有不同微观结构的 Fe3O4/C 纳米复合材料的循环放电行为。