Suppr超能文献

多孔石墨碳纳米片作为锂离子电池的高倍率阳极材料。

Porous graphitic carbon nanosheets as a high-rate anode material for lithium-ion batteries.

机构信息

School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University , Tianjin 300072, China.

出版信息

ACS Appl Mater Interfaces. 2013 Oct 9;5(19):9537-45. doi: 10.1021/am402368p. Epub 2013 Sep 20.

Abstract

Two-dimensional (2D) porous graphitic carbon nanosheets (PGC nanosheets) as a high-rate anode material for lithium storage were synthesized by an easy, low-cost, green, and scalable strategy that involves the preparation of the PGC nanosheets with Fe and Fe3O4 nanoparticles embedded (indicated with (Fe&Fe3O4)@PGC nanosheets) using glucose as the carbon precursor, iron nitrate as the metal precursor, and a surface of sodium chloride as the template followed by the subsequent elimination of the Fe and Fe3O4 nanoparticles from the (Fe&Fe3O4)@PGC nanosheets by acid dissolution. The unique 2D integrative features and porous graphitic characteristic of the carbon nanosheets with high porosity, high electronic conductivity, and outstanding mechanical flexibility and stability are very favorable for the fast and steady transfer of electrons and ions. As a consequence, a very high reversible capacity of up to 722 mAh/g at a current density of 100 mA/g after 100 cycles, a high rate capability (535, 380, 200, and 115 mAh/g at 1, 10, 20, and 30 C, respectively, 1 C = 372 mA/g), and a superior cycling performance at an ultrahigh rate (112 mAh/g at 30 C after 570 charge-discharge cycles) are achieved by using these nanosheets as a lithium-ion-battery anode material.

摘要

二维(2D)多孔石墨碳纳米片(PGC 纳米片)作为一种高倍率锂离子存储的阳极材料,通过一种简单、低成本、绿色且可扩展的策略合成,该策略涉及使用葡萄糖作为碳前体、硝酸铁作为金属前体和氯化钠表面作为模板制备嵌入 Fe 和 Fe3O4 纳米颗粒的 PGC 纳米片(表示为(Fe&Fe3O4)@PGC 纳米片),随后通过酸溶解从(Fe&Fe3O4)@PGC 纳米片中去除 Fe 和 Fe3O4 纳米颗粒。碳纳米片具有独特的 2D 整体特征和多孔石墨特性,具有高孔隙率、高导电性以及出色的机械柔韧性和稳定性,非常有利于电子和离子的快速和稳定转移。因此,这些纳米片作为锂离子电池阳极材料,在 100 次循环后,在 100 mA/g 的电流密度下可达到高达 722 mAh/g 的可逆容量,具有高倍率性能(在 1、10、20 和 30 C 时分别为 535、380、200 和 115 mAh/g,1 C = 372 mA/g),以及在超高倍率下的出色循环性能(在 30 C 下经过 570 次充放电循环后可达到 112 mAh/g)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验