Wang Lijuan, Li Tao, Shen Yuxin, Song Yan
School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, 2West Wenhua Road, Weihai, 264209, China.
Phys Chem Chem Phys. 2016 Mar 28;18(12):8401-11. doi: 10.1039/c5cp07879b.
The electronic structure and charge transport properties of thieno[2,3-b]benzothiophene (TBT) and its eight derivatives are investigated via density functional theory (DFT). The impact of different π-bridge spacers (1, the dimer of TBT; 2, vinyl; 3, phenyl; and 4, tetrafluorophenyl) and substituents (5, phenyl; 6, biphenyl; 7, naphthalenyl; and 8, benzothiophenyl) on the geometric structures, reorganization energy, absorption spectra, frontier orbitals, ionization potentials (IPs) and electron affinities (EAs) of all the compounds is explored to establish the relationship between the structure and properties. All the compounds show wide band gaps and low-lying HOMOs, and the IPs of all the TBT derivatives are higher than that of pentacene. The crystal packing interactions, transfer integrals and charge carrier mobilities of compounds 1, 2, 4 and 6 are also calculated. The calculated results demonstrated that these kinds of materials may exhibit good environmental stability and high charge mobility due to their large conjugated planar structure, close π-stacking arrangement, and multiple intermolecular interactions. For compounds 1 and 4, the predicted hole mobility is as high as 0.28 and 0.17 cm(2) V(-1) s(-1), respectively, indicating that both of them benefit hole transport, while compounds 2 and 6 exhibit balanced charge transport properties with the hole and electron mobilities of 0.012 and 0.013 cm(2) V(-1) s(-1), respectively, for compound 2. Compound 6 shows a relatively lower charge mobilities of 10(-3) order of magnitude for both holes and electrons due to the larger reorganization energy and lower transfer integrals.
通过密度泛函理论(DFT)研究了噻吩并[2,3 - b]苯并噻吩(TBT)及其八种衍生物的电子结构和电荷传输性质。探讨了不同的π桥连间隔基(1,TBT二聚体;2,乙烯基;3,苯基;4,四氟苯基)和取代基(5,苯基;6,联苯基;7,萘基;8,苯并噻吩基)对所有化合物的几何结构、重组能、吸收光谱、前线轨道、电离势(IPs)和电子亲和势(EAs)的影响,以建立结构与性质之间的关系。所有化合物均显示出宽带隙和低 HOMO 能级,并且所有 TBT 衍生物的 IPs 均高于并五苯。还计算了化合物 1、2、4 和 6 的晶体堆积相互作用、转移积分和电荷载流子迁移率。计算结果表明,由于这些材料具有大的共轭平面结构、紧密的π堆积排列和多种分子间相互作用,它们可能表现出良好的环境稳定性和高电荷迁移率。对于化合物 1 和 4,预测的空穴迁移率分别高达 0.28 和 0.17 cm² V⁻¹ s⁻¹,表明它们都有利于空穴传输,而化合物 2 和 6 表现出平衡的电荷传输性质,化合物 2 的空穴和电子迁移率分别为 0.012 和 0.013 cm² V⁻¹ s⁻¹。化合物 6 由于较大的重组能和较低的转移积分,其空穴和电子的电荷迁移率相对较低,为 10⁻³ 数量级。