Yan Shunya, Cornil David, Cornil Jérôme, Beljonne David, Palacios-Rivera Rogger, Ocal Carmen, Barrena Esther
Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, E-08193 Barcelona, Spain.
Laboratory for Chemistry of Novel Materials, University of Mons (UMONS), 20 Place du Parc, 7000 Mons, Belgium.
Chem Mater. 2023 Dec 26;36(1):585-595. doi: 10.1021/acs.chemmater.3c02926. eCollection 2024 Jan 9.
Understanding structure and polymorphism is relevant for any organic device optimization, and it is of particular relevance in 7-decyl-2-phenyl[1]benzothieno[3,2-][1]benzothiophene (Ph-BTBT-10) since high carrier mobility in Ph-BTBT-10 thin films has been linked to the structural transformation from the metastable thin-film phase to the thermodynamically stable bilayer structure via thermal annealing. We combine here a systematic nanoscale morphological analysis with local Kelvin probe force microcopy (KPFM) that demonstrates the formation of a polar polymorph in thin films as an intermediate structure for thicknesses lower than 20 nm. The polar structure develops with thickness a variable amount of structural defects in the form of individual flipped molecules (point defects) or sizable polar domains, and evolves toward the reported nonpolar thin-film phase. The direct experimental evidence is supported by electronic structure density functional theory calculations. The structure of the film has dramatic effects on the electronic properties, leading to a decrease in the film work function (by up to 1 eV) and a considerable broadening of the occupied molecular orbitals, attributed to electrostatic disorder. From an advanced characterization point of view, KPFM stands out as a valuable tool for evaluating electrostatic disorder and the conceivable emergence of polar polymorphs in organic thin films. The emergence of polar assemblies introduces a critical consideration for other asymmetric BTBT derivatives, which may be pivotal to understanding the structure-property relationships in organic field-effect transistors (OFETs). A precise determination of any polar assemblies close to the dielectric interface is critical for the judicious design and upgrading of high-performance OFETs.
理解结构和多晶型对于任何有机器件的优化都至关重要,而对于7-癸基-2-苯基[1]苯并噻吩并[3,2 - ][1]苯并噻吩(Ph - BTBT - 10)来说尤为重要,因为Ph - BTBT - 10薄膜中的高载流子迁移率与通过热退火从亚稳薄膜相到热力学稳定双层结构的结构转变有关。我们在此将系统的纳米级形态分析与局部开尔文探针力显微镜(KPFM)相结合,该显微镜证明了薄膜中极性多晶型物的形成是厚度低于20 nm时的中间结构。极性结构随着厚度的增加而发展,以单个翻转分子(点缺陷)或相当大的极性域的形式存在可变数量的结构缺陷,并朝着报道的非极性薄膜相演变。电子结构密度泛函理论计算支持了这一直接实验证据。薄膜的结构对电子性质有显著影响,导致薄膜功函数降低(高达1 eV)以及占据分子轨道的显著展宽,这归因于静电无序。从先进表征的角度来看,KPFM是评估有机薄膜中静电无序和极性多晶型物可能出现的有价值工具。极性组装体的出现为其他不对称BTBT衍生物引入了关键考虑因素,这可能对理解有机场效应晶体管(OFET)中的结构 - 性质关系至关重要。精确确定靠近介电界面的任何极性组装体对于高性能OFET的明智设计和升级至关重要。