Shirasawa Kenta, Hirakawa Hideki, Isobe Sachiko
Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan.
DNA Res. 2016 Apr;23(2):145-53. doi: 10.1093/dnares/dsw004. Epub 2016 Feb 29.
Double-digest restriction site-associated DNA sequencing (ddRAD-Seq) enables high-throughput genome-wide genotyping with next-generation sequencing technology. Consequently, this method has become popular in plant genetics and breeding. Although computational in silico prediction of restriction sites from the genome sequence is recognized as an effective approach for choosing the restriction enzymes to be used, few reports have evaluated the in silico predictions in actual experimental data. In this study, we designed and demonstrated a workflow for in silico and empirical ddRAD-Seq analysis in tomato, as follows: (i)in silico prediction of optimum restriction enzymes from the reference genome, (ii) verification of the prediction by actual ddRAD-Seq data of four restriction enzyme combinations, (iii) establishment of a computational data processing pipeline for high-confidence single nucleotide polymorphism (SNP) calling, and (iv) validation of SNP accuracy by construction of genetic linkage maps. The quality of SNPs based on de novo assembly reference of the ddRAD-Seq reads was comparable with that of SNPs obtained using the published reference genome of tomato. Comparisons of SNP calls in diverse tomato lines revealed that SNP density in the genome influenced the detectability of SNPs by ddRAD-Seq. In silico prediction prior to actual analysis contributed to optimization of the experimental conditions for ddRAD-Seq, e.g. choices of enzymes and plant materials. Following optimization, this ddRAD-Seq pipeline could help accelerate genetics, genomics, and molecular breeding in both model and non-model plants, including crops.
双酶切限制位点关联DNA测序(ddRAD-Seq)可利用新一代测序技术进行全基因组高通量基因分型。因此,该方法在植物遗传学和育种中已变得很流行。尽管从基因组序列进行限制位点的计算机模拟预测被认为是选择所用限制酶的有效方法,但很少有报告在实际实验数据中评估计算机模拟预测。在本研究中,我们设计并展示了番茄中计算机模拟和经验性ddRAD-Seq分析的工作流程,如下:(i)从参考基因组进行最佳限制酶的计算机模拟预测;(ii)通过四种限制酶组合的实际ddRAD-Seq数据验证预测;(iii)建立用于高可信度单核苷酸多态性(SNP)检测的计算数据处理流程;(iv)通过构建遗传连锁图谱验证SNP准确性。基于ddRAD-Seq reads的从头组装参考的SNP质量与使用已发表的番茄参考基因组获得的SNP质量相当。不同番茄品系中SNP检测结果的比较表明,基因组中的SNP密度影响了ddRAD-Seq对SNP的检测能力。实际分析前的计算机模拟预测有助于优化ddRAD-Seq的实验条件,例如酶和植物材料的选择。经过优化后,这种ddRAD-Seq流程有助于加速模式植物和非模式植物(包括作物)的遗传学、基因组学和分子育种研究。