Suppr超能文献

通过两种延龄草属植物的完整叶绿体基因组序列洞察属下分类

Insight into infrageneric circumscription through complete chloroplast genome sequences of two Trillium species.

作者信息

Kim Sang-Chul, Kim Jung Sung, Kim Joo-Hwan

机构信息

Department of Life Science, Gachon University, Seongnamdaero 1342, Seongnam-si, Gyeonggi-do 461-701, Korea.

Department of Life Science, Gachon University, Seongnamdaero 1342, Seongnam-si, Gyeonggi-do 461-701, Korea

出版信息

AoB Plants. 2016 Apr 6;8. doi: 10.1093/aobpla/plw015. Print 2016.

Abstract

Genomic events including gene loss, duplication, pseudogenization and rearrangement in plant genomes are valuable sources for exploring and understanding the process of evolution in angiosperms. The family Melanthiaceae is distributed in temperate regions of the Northern Hemisphere and divided into five tribes (Heloniadeae, Chionographideae, Xerophylleae, Melanthieae and Parideae) based on the molecular phylogenetic analyses. At present, complete chloroplast genomes of the Melanthiaceae have been reported from three species. In the previous genomic study of Liliales, atrnI-CAU gene duplication event was reported fromParis verticillata, a member of Parideae. To clarify the significant genomic events of the tribe Parideae, we analysed the complete chloroplast genome sequences of twoTrilliumspecies representing two subgenera:TrilliumandPhyllantherum InTrillium tschonoskii(subgenusTrillium), the circular double-stranded cpDNA sequence of 156 852 bp consists of two inverted repeat (IR) regions of 26 501 bp each, a large single-copy (LSC) region of 83 981 bp and a small single-copy (SSC) region of 19 869 bp. The chloroplast genome sequence ofT. maculatum(subgenusPhyllantherum) is 157 359 bp in length, consisting of two IRs (25 535 bp), one SSC (19 949 bp) and one LSC (86 340 bp), and is longer than that ofT. tschonoskii The results showed that the cpDNAs of Parideae are highly conserved across genome structure, gene order and contents. However, the chloroplast genome ofT. maculatumcontained a 3.4-kb inverted sequence betweenndhCandrbcLin the LSC region, and it was a unique feature for subgeneraPhyllantherum In addition, we found three different types of gene duplication in the intergenic spacer betweenrpl23andycf2containingtrnI-CAU, which were in agreement with the circumscription of subgenera and sections in Parideae excludingT. govanianum These genomic features provide informative molecular markers for identifying the infrageneric taxa ofTrilliumand improve our understanding of the evolution patterns of Parideae in Melanthiaceae.

摘要

植物基因组中的基因丢失、复制、假基因化和重排等基因组事件是探索和理解被子植物进化过程的宝贵资源。延龄草科分布于北半球温带地区,根据分子系统发育分析分为五个族(七筋姑族、白丝草族、旱叶百合族、延龄草族和舞鹤草族)。目前,已报道了延龄草科三个物种的完整叶绿体基因组。在之前对百合目植物的基因组研究中,报道了舞鹤草族成员轮叶王孙中atrnI-CAU基因的复制事件。为了阐明舞鹤草族的重要基因组事件,我们分析了代表两个亚属(延龄草亚属和柄叶延龄草亚属)的两种延龄草属植物的完整叶绿体基因组序列。在延龄草(延龄草亚属)中,156 852 bp的环状双链叶绿体DNA序列由两个各为26 501 bp的反向重复(IR)区域、一个83 981 bp的大单拷贝(LSC)区域和一个19 869 bp的小单拷贝(SSC)区域组成。黄斑延龄草(柄叶延龄草亚属)的叶绿体基因组序列长度为157 359 bp,由两个IR(25 535 bp)、一个SSC(19 949 bp)和一个LSC(86 340 bp)组成,比延龄草的长。结果表明,舞鹤草族的叶绿体DNA在基因组结构、基因顺序和内容上高度保守。然而,黄斑延龄草的叶绿体基因组在LSC区域的ndhC和rbcL之间包含一个3.4 kb的反向序列,这是柄叶延龄草亚属的一个独特特征。此外,我们在包含trnI-CAU的rpl23和ycf2之间的基因间隔区发现了三种不同类型的基因重复,这与舞鹤草族除高黎贡山延龄草外的亚属和组的划分一致。这些基因组特征为鉴定延龄草属的属下分类群提供了信息丰富的分子标记,并增进了我们对延龄草科舞鹤草族进化模式的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3ad/4823371/e6eb995a24fe/plw01501.jpg

相似文献

4
A Dynamic Tandem Repeat in Monocotyledons Inferred from a Comparative Analysis of Chloroplast Genomes in Melanthiaceae.
Front Plant Sci. 2017 May 22;8:693. doi: 10.3389/fpls.2017.00693. eCollection 2017.
6
Analysis of Complete Chloroplast Genome Sequences Improves Phylogenetic Resolution in (Melanthiaceae).
Front Plant Sci. 2016 Nov 29;7:1797. doi: 10.3389/fpls.2016.01797. eCollection 2016.
7
Historical Biogeography of Melanthiaceae: A Case of Out-of-North America Through the Bering Land Bridge.
Front Plant Sci. 2019 Apr 4;10:396. doi: 10.3389/fpls.2019.00396. eCollection 2019.

引用本文的文献

2
Comparative analysis and implications of the chloroplast genomes of three thistles ( L., Asteraceae).
PeerJ. 2021 Jan 14;9:e10687. doi: 10.7717/peerj.10687. eCollection 2021.
3
Species Identification of Using the Complete Chloroplast Genome as a Super-Barcode.
Front Pharmacol. 2019 Nov 29;10:1441. doi: 10.3389/fphar.2019.01441. eCollection 2019.
9
Chloroplast Genomic Resource of Paris for Species Discrimination.
Sci Rep. 2017 Jun 13;7(1):3427. doi: 10.1038/s41598-017-02083-7.
10
A Dynamic Tandem Repeat in Monocotyledons Inferred from a Comparative Analysis of Chloroplast Genomes in Melanthiaceae.
Front Plant Sci. 2017 May 22;8:693. doi: 10.3389/fpls.2017.00693. eCollection 2017.

本文引用的文献

1
The dynamic history of plastid genomes in the Campanulaceae sensu lato is unique among angiosperms.
Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):11097-102. doi: 10.1073/pnas.1403363111. Epub 2014 Jul 14.
3
Complete sequencing of five araliaceae chloroplast genomes and the phylogenetic implications.
PLoS One. 2013 Oct 18;8(10):e78568. doi: 10.1371/journal.pone.0078568. eCollection 2013.
4
MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.
Mol Biol Evol. 2013 Dec;30(12):2725-9. doi: 10.1093/molbev/mst197. Epub 2013 Oct 16.
7
The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza.
PLoS One. 2013;8(2):e57607. doi: 10.1371/journal.pone.0057607. Epub 2013 Feb 27.
9
Complete cpDNA genome sequence of Smilax china and phylogenetic placement of Liliales--influences of gene partitions and taxon sampling.
Mol Phylogenet Evol. 2012 Sep;64(3):545-62. doi: 10.1016/j.ympev.2012.05.010. Epub 2012 May 27.
10
Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.
Bioinformatics. 2012 Jun 15;28(12):1647-9. doi: 10.1093/bioinformatics/bts199. Epub 2012 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验