Alikaniotis Katia, Borla Oscar, Monti Valeria, Vivaldo Gianna, Zanini Alba, Giannini Gianrossano
Department of Physics, University of Turin, Via Pietro Giuria 1, 10126 Torino, Italy.
Polytechnic of Turin, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
Rep Pract Oncol Radiother. 2016 Mar-Apr;21(2):117-22. doi: 10.1016/j.rpor.2015.07.003. Epub 2015 Aug 10.
To employ the thermal neutron background that affects the patient during a traditional high-energy radiotherapy treatment for BNCT (Boron Neutron Capture Therapy) in order to enhance radiotherapy effectiveness.
Conventional high-energy (15-25 MV) linear accelerators (LINACs) for radiotherapy produce fast secondary neutrons in the gantry with a mean energy of about 1 MeV due to (γ, n) reaction. This neutron flux, isotropically distributed, is considered as an unavoidable undesired dose during the treatment. Considering the moderating effect of human body, a thermal neutron fluence is localized in the tumour area: this neutron background could be employed for BNCT by previously administering (10)B-Phenyl-Alanine ((10)BPA) to the patient.
Monte Carlo simulations (MCNP4B-GN code) were performed to estimate the total amount of neutrons outside and inside human body during a traditional X-ray radiotherapy treatment. Moreover, a simplified tissue equivalent anthropomorphic phantom was used together with bubble detectors for thermal and fast neutron to evaluate the moderation effect of human body.
Simulation and experimental results confirm the thermal neutron background during radiotherapy of 1.55E07 cm(-2) Gy(-1). The BNCT equivalent dose delivered at 4 cm depth in phantom is 1.5 mGy-eq/Gy, that is about 3 Gy-eq (4% of X-rays dose) for a 70 Gy IMRT treatment.
The thermal neutron component during a traditional high-energy radiotherapy treatment could produce a localized BNCT effect, with a localized therapeutic dose enhancement, corresponding to 4% or more of photon dose, following tumour characteristics. This BNCT additional dose could thus improve radiotherapy, acting as a localized radio-sensitizer.
利用传统高能放射治疗过程中影响患者的热中子本底,以提高放射治疗效果。
用于放射治疗的传统高能(15 - 25 MV)直线加速器(LINAC)由于(γ,n)反应,在机架中产生平均能量约为1 MeV的快次级中子。这种各向同性分布的中子通量在治疗过程中被视为不可避免的不良剂量。考虑到人体的慢化作用,热中子注量集中在肿瘤区域:通过预先给患者施用(10)B - 苯丙氨酸((10)BPA),这种中子本底可用于硼中子俘获疗法(BNCT)。
进行蒙特卡罗模拟(MCNP4B - GN代码)以估计传统X射线放射治疗期间人体内外的中子总量。此外,使用简化的组织等效人体模型以及用于热中子和快中子的气泡探测器来评估人体的慢化作用。
模拟和实验结果证实放射治疗期间的热中子本底为1.55E07 cm(-2) Gy(-1)。在模型中4 cm深度处递送的BNCT等效剂量为1.5 mGy - eq/Gy,对于70 Gy的调强放射治疗(IMRT),这相当于约3 Gy - eq(X射线剂量的4%)。
传统高能放射治疗过程中的热中子成分可产生局部BNCT效应,具有局部治疗剂量增强,根据肿瘤特征,相当于光子剂量的4%或更多。因此,这种BNCT额外剂量可作为局部放射增敏剂改善放射治疗。