Suppr超能文献

西门子和瓦里安直线加速器高能光子束的光核剂量计算。

Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.

作者信息

Chibani Omar, Ma Chang-Ming Charlie

机构信息

Department of Radiation Oncology, Massy Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23298, USA.

出版信息

Med Phys. 2003 Aug;30(8):1990-2000. doi: 10.1118/1.1590436.

Abstract

The dose from photon-induced nuclear particles (neutrons, protons, and alpha particles) generated by high-energy photon beams from medical linacs is investigated. Monte Carlo calculations using the MCNPX code are performed for three different photon beams from two different machines: Siemens 18 MV, Varian 15 MV, and Varian 18 MV. The linac head components are simulated in detail. The dose distributions from photons, neutrons, protons, and alpha particles are calculated in a tissue-equivalent phantom. Neutrons are generated in both the linac head and the phantom. This study includes (a) field size effects, (b) off-axis dose profiles, (c) neutron contribution from the linac head, (d) dose contribution from capture gamma rays, (e) phantom heterogeneity effects, and (f) effects of primary electron energy shift. Results are presented in terms of absolute dose distributions and also in terms of DER (dose equivalent ratio). The DER is the maximum dose from the particle (neutron, proton, or alpha) divided by the maximum photon dose, multiplied by the particle quality factor and the modulation scaling factor. The total DER including neutrons, protons, and alphas is about 0.66 cSv/Gy for the Siemens 18 MV beam (10 cm x 10 cm). The neutron DER decreases with decreasing field size while the proton (or alpha) DER does not vary significantly except for the 1 cm x 1 cm field. Both Varian beams (15 and 18 MV) produce more neutrons, protons, and alphas particles than the Siemens 18 MV beam. This is mainly due to their higher primary electron energies: 15 and 18.3 MeV, respectively, vs 14 MeV for the Siemens 18 MV beam. For all beams, neutrons contribute more than 75% of the total DER, except for the 1 cm x 1 cm field (approximately 50%). The total DER is 1.52 and 2.86 cSv/Gy for the 15 and 18 MV Varian beams (10 cm x 10 cm), respectively. Media with relatively high-Z elements like bone may increase the dose from heavy charged particles by a factor 4. The total DER is sensitive to primary electron energy shift. A Siemens 18 MV beam with 15 MeV (instead of 14 MeV) primary electrons would increase by 40% the neutron DER and by 210% the proton + alpha DER. Comparisons with measurements (neutron yields from different materials and neutron dose equivalent) are also presented. Using the NCRP risk assessment method, we found that the dose equivalent from leakage neutrons (at 50-cm off-axis distance) represent 1.1, 1.1, and 2.0% likelihood of fatal secondary cancer for a 70 Gy treatment delivered by the Siemens 18 MV, Varian 15 MV, and Varian 18 MV beams, respectively.

摘要

对医用直线加速器产生的高能光子束所引发的光子诱导核粒子(中子、质子和α粒子)剂量进行了研究。使用MCNPX代码针对两台不同机器产生的三种不同光子束进行了蒙特卡罗计算:西门子18兆伏、瓦里安15兆伏和瓦里安18兆伏。对直线加速器机头部件进行了详细模拟。在组织等效体模中计算了光子、中子、质子和α粒子的剂量分布。中子在直线加速器机头和体模中均会产生。本研究包括:(a)射野大小效应;(b)离轴剂量分布;(c)直线加速器机头的中子贡献;(d)俘获γ射线的剂量贡献;(e)体模不均匀性效应;(f)初级电子能量偏移效应。结果以绝对剂量分布以及剂量当量比(DER)的形式呈现。DER是粒子(中子、质子或α粒子)的最大剂量除以最大光子剂量,再乘以粒子品质因数和调制比例因子。对于西门子18兆伏束(10厘米×10厘米),包括中子、质子和α粒子的总DER约为0.66厘希沃特/戈瑞。中子DER随射野大小减小而降低,而质子(或α粒子)DER除1厘米×1厘米射野外变化不显著。两台瓦里安束(15兆伏和18兆伏)产生的中子、质子和α粒子均比西门子18兆伏束多。这主要是由于它们的初级电子能量更高:分别为15兆电子伏和18.3兆电子伏,而西门子18兆伏束为14兆电子伏。对于所有束,除1厘米×1厘米射野外(约50%),中子对总DER的贡献超过75%。15兆伏和18兆伏瓦里安束(10厘米×10厘米)的总DER分别为1.52和2.86厘希沃特/戈瑞。含有相对高原子序数元素(如骨骼)的介质可能会使重带电粒子剂量增加4倍。总DER对初级电子能量偏移敏感。初级电子能量为15兆电子伏(而非14兆电子伏)的西门子18兆伏束会使中子DER增加40%,质子 + α粒子DER增加210%。还给出了与测量结果(不同材料的中子产额和中子剂量当量)的比较。使用NCRP风险评估方法,我们发现对于西门子18兆伏、瓦里安15兆伏和瓦里安18兆伏束进行的70戈瑞治疗,泄漏中子的剂量当量在离轴50厘米距离处分别代表致命性继发性癌症的发生概率为1.1%、1.1%和2.0%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验