Suppr超能文献

使用脑电图和标准化低分辨率脑电磁断层成像独立成分分析(sLORETA-ICA)检测音乐聆听过程中的独立功能网络。

Detection of independent functional networks during music listening using electroencephalogram and sLORETA-ICA.

作者信息

Jäncke Lutz, Alahmadi Nsreen

机构信息

aDepartment of Neuropsychology, Psychological Institute, University of Zurich, Zurich, Switzerland bDepartment of Special Education, Program of Higher Educational Studies, King Abdulaziz University, Jeddah, Saudi Arabia.

出版信息

Neuroreport. 2016 Apr 13;27(6):455-61. doi: 10.1097/WNR.0000000000000563.

Abstract

The measurement of brain activation during music listening is a topic that is attracting increased attention from many researchers. Because of their high spatial accuracy, functional MRI measurements are often used for measuring brain activation in the context of music listening. However, this technique faces the issues of contaminating scanner noise and an uncomfortable experimental environment. Electroencephalogram (EEG), however, is a neural registration technique that allows the measurement of neurophysiological activation in silent and more comfortable experimental environments. Thus, it is optimal for recording brain activations during pleasant music stimulation. Using a new mathematical approach to calculate intracortical independent components (sLORETA-IC) on the basis of scalp-recorded EEG, we identified specific intracortical independent components during listening of a musical piece and scales, which differ substantially from intracortical independent components calculated from the resting state EEG. Most intracortical independent components are located bilaterally in perisylvian brain areas known to be involved in auditory processing and specifically in music perception. Some intracortical independent components differ between the music and scale listening conditions. The most prominent difference is found in the anterior part of the perisylvian brain region, with stronger activations seen in the left-sided anterior perisylvian regions during music listening, most likely indicating semantic processing during music listening. A further finding is that the intracortical independent components obtained for the music and scale listening are most prominent in higher frequency bands (e.g. beta-2 and beta-3), whereas the resting state intracortical independent components are active in lower frequency bands (alpha-1 and theta). This new technique for calculating intracortical independent components is able to differentiate independent neural networks associated with music and scale listening. Thus, this tool offers new opportunities for studying neural activations during music listening using the silent and more convenient EEG technology.

摘要

在音乐聆听过程中测量大脑激活是一个正吸引着众多研究者日益关注的话题。由于功能磁共振成像(fMRI)测量具有较高的空间精度,因此在音乐聆听背景下测量大脑激活时经常被使用。然而,这项技术面临着扫描仪噪声污染和实验环境不舒适的问题。而脑电图(EEG)是一种神经记录技术,它能够在安静且更舒适的实验环境中测量神经生理激活。因此,它对于记录愉悦音乐刺激期间的大脑激活是最佳的。我们使用一种基于头皮记录的脑电图计算皮质内独立成分的新数学方法(sLORETA - IC),在聆听一首乐曲和音阶时识别出了特定的皮质内独立成分,这些成分与从静息状态脑电图计算出的皮质内独立成分有很大不同。大多数皮质内独立成分双侧位于已知参与听觉处理尤其是音乐感知的颞叶周围脑区。音乐和音阶聆听条件下的一些皮质内独立成分有所不同。最显著的差异出现在颞叶周围脑区的前部,在音乐聆听期间左侧颞叶周围前部区域有更强的激活,这很可能表明音乐聆听期间的语义处理。另一个发现是,在音乐和音阶聆听时获得的皮质内独立成分在较高频段(如β - 2和β - 3)最为突出,而静息状态下的皮质内独立成分在较低频段(α - 1和θ)活跃。这种计算皮质内独立成分的新技术能够区分与音乐和音阶聆听相关的独立神经网络。因此,这个工具为使用安静且更便捷的脑电图技术研究音乐聆听期间的神经激活提供了新机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验