Cooper Benjamin G, Stewart Rachel C, Burstein Deborah, Snyder Brian D, Grinstaff Mark W
Departments of Chemistry and Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
Angew Chem Int Ed Engl. 2016 Mar 18;55(13):4226-30. doi: 10.1002/anie.201511767. Epub 2016 Mar 2.
Incorporation of an interpenetrating polymer network into an existing single polymer network enables augmentation of the original substrate's mechanical properties, and translation of this concept from purely synthetic materials to natural-synthetic hybrid systems provides the opportunity to reinforce mechanical properties of bulk biological substrates. In many disease states, the mechanical properties of bodily tissues deteriorate rendering them prone to further material failure. Herein, a tissue-supplementing technique is described in which an interpenetrating biomimetic hydrogel is polymerized in situ throughout cartilage tissue. The treatment restores the inferior compressive properties of osteoarthritic cartilage to that of healthy cartilage, preferentially localizing to weaker regions of tissue. Furthermore, the treatment technique preserves cartilage under harsh articulation conditions, showing promise as a materials-based treatment for early-stage osteoarthritis.
将互穿聚合物网络引入现有的单一聚合物网络能够增强原始基质的机械性能,并且将这一概念从纯合成材料转变为天然-合成混合体系,为增强大块生物基质的机械性能提供了机会。在许多疾病状态下,身体组织的机械性能会恶化,使其易于发生进一步的材料失效。在此,描述了一种组织补充技术,其中互穿仿生水凝胶在整个软骨组织中原位聚合。该治疗方法将骨关节炎软骨较差的压缩性能恢复到健康软骨的水平,优先定位于组织较弱的区域。此外,该治疗技术在苛刻的关节活动条件下能保护软骨,有望成为早期骨关节炎的基于材料的治疗方法。