Suppr超能文献

具有可调机械性能的光交联酪胺取代透明质酸水凝胶可提高关节软骨中即刻组织-水凝胶界面强度。

Photocrosslinked tyramine-substituted hyaluronate hydrogels with tunable mechanical properties improve immediate tissue-hydrogel interfacial strength in articular cartilage.

机构信息

a Laboratory for Soft Tissue Research , Hospital for Special Surgery , New York , NY , USA.

b Department of Biomechanics , Hospital for Special Surgery , New York , NY , USA.

出版信息

J Biomater Sci Polym Ed. 2017 Apr;28(6):582-600. doi: 10.1080/09205063.2017.1289035. Epub 2017 Feb 5.

Abstract

Articular cartilage lacks the ability to self-repair and a permanent solution for cartilage repair remains elusive. Hydrogel implantation is a promising technique for cartilage repair; however for the technique to be successful hydrogels must interface with the surrounding tissue. The objective of this study was to investigate the tunability of mechanical properties in a hydrogel system using a phenol-substituted polymer, tyramine-substituted hyaluronate (TA-HA), and to determine if the hydrogels could form an interface with cartilage. We hypothesized that tyramine moieties on hyaluronate could crosslink to aromatic amino acids in the cartilage extracellular matrix. Ultraviolet (UV) light and a riboflavin photosensitizer were used to create a hydrogel by tyramine self-crosslinking. The gel mechanical properties were tuned by varying riboflavin concentration, TA-HA concentration, and UV exposure time. Hydrogels formed with a minimum of 2.5 min of UV exposure. The compressive modulus varied from 5 to 16 kPa. Fluorescence spectroscopy analysis found differences in dityramine content. Cyanine-3 labelled tyramide reactivity at the surface of cartilage was dependent on the presence of riboflavin and UV exposure time. Hydrogels fabricated within articular cartilage defects had increasing peak interfacial shear stress at the cartilage-hydrogel interface with increasing UV exposure time, reaching a maximum shear stress 3.5× greater than a press-fit control. Our results found that phenol-substituted polymer/riboflavin systems can be used to fabricate hydrogels with tunable mechanical properties and can interface with the surface tissue, such as articular cartilage.

摘要

关节软骨缺乏自我修复的能力,而永久性的软骨修复方法仍然难以捉摸。水凝胶植入是一种有前途的软骨修复技术;然而,为了使该技术成功,水凝胶必须与周围组织相连接。本研究的目的是研究使用酚取代聚合物、酪胺取代透明质酸(TA-HA)的水凝胶系统的机械性能可调性,并确定水凝胶是否可以与软骨形成界面。我们假设透明质酸上的酪胺部分可以与软骨细胞外基质中的芳香族氨基酸交联。使用紫外线(UV)光和核黄素光敏剂通过酪胺自交联来形成水凝胶。通过改变核黄素浓度、TA-HA 浓度和 UV 照射时间来调整水凝胶的机械性能。水凝胶在最少 2.5 分钟的 UV 照射下形成。压缩模量从 5 到 16kPa 不等。荧光光谱分析发现二羟胺含量存在差异。在软骨表面,Cy3 标记的酪胺反应性依赖于核黄素的存在和 UV 照射时间。在关节软骨缺损内制造的水凝胶,随着 UV 照射时间的增加,在软骨-水凝胶界面处的峰值界面剪切应力逐渐增加,最大剪切应力比压配合对照高 3.5 倍。我们的结果发现,酚取代聚合物/核黄素系统可用于制造具有可调机械性能的水凝胶,并可与表面组织(如关节软骨)形成界面。

相似文献

2
Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering.
Biomaterials. 2010 Apr;31(11):3103-13. doi: 10.1016/j.biomaterials.2010.01.013. Epub 2010 Feb 8.
3
Tyrosinase-crosslinked, tissue adhesive and biomimetic alginate sulfate hydrogels for cartilage repair.
Biomed Mater. 2020 Jun 24;15(4):045019. doi: 10.1088/1748-605X/ab8318.
4
An injectable BMSC-laden enzyme-catalyzed crosslinking collagen-hyaluronic acid hydrogel for cartilage repair and regeneration.
J Mater Chem B. 2020 May 21;8(19):4237-4244. doi: 10.1039/d0tb00291g. Epub 2020 Apr 9.
5
Visible-light-induced hyaluronate hydrogel for soft tissue fillers.
Int J Biol Macromol. 2020 Dec 15;165(Pt B):2834-2844. doi: 10.1016/j.ijbiomac.2020.10.155. Epub 2020 Oct 24.
7
Double - network hydrogel based on exopolysaccharides as a biomimetic extracellular matrix to augment articular cartilage regeneration.
Acta Biomater. 2022 Oct 15;152:124-143. doi: 10.1016/j.actbio.2022.08.062. Epub 2022 Aug 31.
9
Synthesis and characterization of tyramine-based hyaluronan hydrogels.
J Mater Sci Mater Med. 2009 Jan;20(1):33-44. doi: 10.1007/s10856-008-3540-0. Epub 2008 Jul 31.
10
Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage.
Biomaterials. 2018 May;163:89-104. doi: 10.1016/j.biomaterials.2018.02.016. Epub 2018 Feb 9.

引用本文的文献

1
Advancements in Hydrogel-Based Therapies for Ovarian Cancer: A Review.
Cell Biochem Biophys. 2025 Mar;83(1):87-108. doi: 10.1007/s12013-024-01483-7. Epub 2024 Aug 27.
2
Trends in Photopolymerizable Bioinks for 3D Bioprinting of Tumor Models.
JACS Au. 2023 Aug 11;3(8):2086-2106. doi: 10.1021/jacsau.3c00281. eCollection 2023 Aug 28.
3
A Photopolymerizable Biocompatible Hyaluronic Acid Hydrogel Promotes Early Articular Cartilage Repair in a Minipig Model In Vivo.
Adv Healthc Mater. 2023 Oct;12(26):e2300931. doi: 10.1002/adhm.202300931. Epub 2023 Aug 18.
4
Green Chemistry for Crosslinking Biopolymers: Recent Advances in Riboflavin-Mediated Photochemistry.
Materials (Basel). 2023 Jan 31;16(3):1218. doi: 10.3390/ma16031218.
5
Prospective bacterial and fungal sources of hyaluronic acid: A review.
Comput Struct Biotechnol J. 2022 Nov 10;20:6214-6236. doi: 10.1016/j.csbj.2022.11.013. eCollection 2022.
6
Electroconductive Photo-Curable PEGDA-Gelatin/PEDOT:PSS Hydrogels for Prospective Cardiac Tissue Engineering Application.
Front Bioeng Biotechnol. 2022 Jun 24;10:897575. doi: 10.3389/fbioe.2022.897575. eCollection 2022.
7
Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis.
Chem Rev. 2022 Jan 26;122(2):2017-2291. doi: 10.1021/acs.chemrev.1c00374. Epub 2021 Nov 23.
8
Non-cytotoxic Dityrosine Photocrosslinked Polymeric Materials With Targeted Elastic Moduli.
Front Chem. 2020 Mar 13;8:173. doi: 10.3389/fchem.2020.00173. eCollection 2020.
9
Glycosaminoglycan-Inspired Biomaterials for the Development of Bioactive Hydrogel Networks.
Molecules. 2020 Feb 21;25(4):978. doi: 10.3390/molecules25040978.
10
Effect of photoinitiator on chain degradation of hyaluronic acid.
Biomater Res. 2019 Nov 21;23:21. doi: 10.1186/s40824-019-0170-1. eCollection 2019.

本文引用的文献

2
Hydrogels for tissue engineering and regenerative medicine.
J Mater Chem B. 2014 Sep 7;2(33):5319-5338. doi: 10.1039/c4tb00775a. Epub 2014 Jul 21.
3
Effect of crosslinking in cartilage-like collagen microstructures.
J Mech Behav Biomed Mater. 2017 Feb;66:138-143. doi: 10.1016/j.jmbbm.2016.10.006. Epub 2016 Oct 15.
4
The self-crosslinking smart hyaluronic acid hydrogels as injectable three-dimensional scaffolds for cells culture.
Colloids Surf B Biointerfaces. 2016 Apr 1;140:392-402. doi: 10.1016/j.colsurfb.2016.01.008. Epub 2016 Jan 6.
5
Promoting Cell Survival and Proliferation in Degradable Poly(vinyl alcohol)-Tyramine Hydrogels.
Macromol Biosci. 2015 Oct;15(10):1423-32. doi: 10.1002/mabi.201500121. Epub 2015 Jun 11.
6
Photocrosslinked layered gelatin-chitosan hydrogel with graded compositions for osteochondral defect repair.
J Mater Sci Mater Med. 2015 Apr;26(4):160. doi: 10.1007/s10856-015-5489-0. Epub 2015 Mar 19.
7
Injectable glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering.
Biomaterials. 2015 May;51:238-249. doi: 10.1016/j.biomaterials.2015.02.026. Epub 2015 Feb 20.
8
Continuous multilayered composite hydrogel as osteochondral substitute.
J Biomed Mater Res A. 2015 Aug;103(8):2521-30. doi: 10.1002/jbm.a.35389. Epub 2014 Dec 19.
9
Resurfacing damaged articular cartilage to restore compressive properties.
J Biomech. 2015 Jan 2;48(1):122-9. doi: 10.1016/j.jbiomech.2014.10.023. Epub 2014 Nov 5.
10
Injectable gelatin derivative hydrogels with sustained vascular endothelial growth factor release for induced angiogenesis.
Acta Biomater. 2015 Feb;13:88-100. doi: 10.1016/j.actbio.2014.11.002. Epub 2014 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验