Suppr超能文献

使用堆叠生存模型估计受限平均治疗效果。

Estimating restricted mean treatment effects with stacked survival models.

作者信息

Wey Andrew, Vock David M, Connett John, Rudser Kyle

机构信息

Minneapolis Medical Research Foundation, Minneapolis, MN, U.S.A.

Biostatistics and Data Management Core, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii.

出版信息

Stat Med. 2016 Aug 30;35(19):3319-32. doi: 10.1002/sim.6929. Epub 2016 Mar 2.

Abstract

The difference in restricted mean survival times between two groups is a clinically relevant summary measure. With observational data, there may be imbalances in confounding variables between the two groups. One approach to account for such imbalances is estimating a covariate-adjusted restricted mean difference by modeling the covariate-adjusted survival distribution and then marginalizing over the covariate distribution. Because the estimator for the restricted mean difference is defined by the estimator for the covariate-adjusted survival distribution, it is natural to expect that a better estimator of the covariate-adjusted survival distribution is associated with a better estimator of the restricted mean difference. We therefore propose estimating restricted mean differences with stacked survival models. Stacked survival models estimate a weighted average of several survival models by minimizing predicted error. By including a range of parametric, semi-parametric, and non-parametric models, stacked survival models can robustly estimate a covariate-adjusted survival distribution and, therefore, the restricted mean treatment effect in a wide range of scenarios. We demonstrate through a simulation study that better performance of the covariate-adjusted survival distribution often leads to better mean squared error of the restricted mean difference although there are notable exceptions. In addition, we demonstrate that the proposed estimator can perform nearly as well as Cox regression when the proportional hazards assumption is satisfied and significantly better when proportional hazards is violated. Finally, the proposed estimator is illustrated with data from the United Network for Organ Sharing to evaluate post-lung transplant survival between large-volume and small-volume centers. Copyright © 2016 John Wiley & Sons, Ltd.

摘要

两组受限平均生存时间的差异是一种具有临床相关性的汇总指标。对于观察性数据,两组之间的混杂变量可能存在不均衡。处理此类不均衡的一种方法是,通过对协变量调整后的生存分布进行建模,然后对协变量分布进行边际化,来估计协变量调整后的受限平均差异。由于受限平均差异的估计量是由协变量调整后的生存分布的估计量定义的,因此可以自然地预期,协变量调整后的生存分布的更好估计量与受限平均差异的更好估计量相关。因此,我们建议使用堆叠生存模型来估计受限平均差异。堆叠生存模型通过最小化预测误差来估计几个生存模型的加权平均值。通过纳入一系列参数模型、半参数模型和非参数模型,堆叠生存模型能够在广泛的情形中稳健地估计协变量调整后的生存分布,进而估计受限平均治疗效果。我们通过一项模拟研究表明,尽管存在显著例外情况,但协变量调整后的生存分布的更好性能通常会导致受限平均差异的均方误差更小。此外,我们证明,当满足比例风险假设时,所提出的估计量的性能几乎与Cox回归一样好,而当比例风险假设不成立时,其性能则显著更好。最后,我们用器官共享联合网络的数据说明了所提出的估计量,以评估大容量中心和小容量中心之间肺移植后的生存情况。版权所有© 2016约翰威立父子有限公司。

相似文献

5
Estimation of treatment effects based on possibly misspecified Cox regression.基于可能错误设定的Cox回归的治疗效果估计。
Lifetime Data Anal. 2012 Oct;18(4):408-33. doi: 10.1007/s10985-012-9222-8. Epub 2012 Apr 21.
6
Covariate-adjusted non-parametric survival curve estimation.校正协变量的非参数生存曲线估计。
Stat Med. 2011 May 20;30(11):1243-53. doi: 10.1002/sim.4216. Epub 2011 Feb 23.

本文引用的文献

4
Censored quantile regression with recursive partitioning-based weights.基于递归分区的加权有偏分位数回归。
Biostatistics. 2014 Jan;15(1):170-81. doi: 10.1093/biostatistics/kxt027. Epub 2013 Aug 23.
8
Bayesian effect estimation accounting for adjustment uncertainty.考虑调整不确定性的贝叶斯效应估计。
Biometrics. 2012 Sep;68(3):661-71. doi: 10.1111/j.1541-0420.2011.01731.x. Epub 2012 Feb 24.
10
Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer.非小细胞肺癌临床试验的强化学习策略
Biometrics. 2011 Dec;67(4):1422-33. doi: 10.1111/j.1541-0420.2011.01572.x. Epub 2011 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验