Suppr超能文献

描绘多种癌症中的突变-表达网络关系。

Characterizing mutation-expression network relationships in multiple cancers.

作者信息

Ghazanfar Shila, Yang Jean Yee Hwa

机构信息

School of Mathematics and Statistics at the University of Sydney, F07, The University of Sydney, NSW 2006, Australia; Data61, CSIRO, Locked Bag 17, North Ryde, NSW 2113, Australia.

School of Mathematics and Statistics at the University of Sydney, F07, The University of Sydney, NSW 2006, Australia.

出版信息

Comput Biol Chem. 2016 Aug;63:73-82. doi: 10.1016/j.compbiolchem.2016.02.009. Epub 2016 Feb 12.

Abstract

BACKGROUND

Data made available through large cancer consortia like The Cancer Genome Atlas make for a rich source of information to be studied across and between cancers. In recent years, network approaches have been applied to such data in uncovering the complex interrelationships between mutational and expression profiles, but lack direct testing for expression changes via mutation. In this pan-cancer study we analyze mutation and gene expression information in an integrative manner by considering the networks generated by testing for differences in expression in direct association with specific mutations. We relate our findings among the 19 cancers examined to identify commonalities and differences as well as their characteristics.

RESULTS

Using somatic mutation and gene expression information across 19 cancers, we generated mutation-expression networks per cancer. On evaluation we found that our generated networks were significantly enriched for known cancer-related genes, such as skin cutaneous melanoma (p<0.01 using Network of Cancer Genes 4.0). Our framework identified that while different cancers contained commonly mutated genes, there was little concordance between associated gene expression changes among cancers. Comparison between cancers showed a greater overlap of network nodes for cancers with higher overall non-silent mutation load, compared to those with a lower overall non-silent mutation load.

CONCLUSIONS

This study offers a framework that explores network information through co-analysis of somatic mutations and gene expression profiles. Our pan-cancer application of this approach suggests that while mutations are frequently common among cancer types, the impact they have on the surrounding networks via gene expression changes varies. Despite this finding, there are some cancers for which mutation-associated network behaviour appears to be similar: suggesting a potential framework for uncovering related cancers for which similar therapeutic strategies may be applicable. Our framework for understanding relationships among cancers has been integrated into an interactive R Shiny application, PAn Cancer Mutation Expression Networks (PACMEN), containing dynamic and static network visualization of the mutation-expression networks. PACMEN also features tools for further examination of network topology characteristics among cancers.

摘要

背景

通过像癌症基因组图谱这样的大型癌症联盟提供的数据,是跨癌症及癌症之间进行研究的丰富信息来源。近年来,网络方法已应用于此类数据,以揭示突变和表达谱之间的复杂相互关系,但缺乏对通过突变引起的表达变化的直接测试。在这项泛癌症研究中,我们通过考虑与特定突变直接相关的表达差异测试所生成的网络,以综合方式分析突变和基因表达信息。我们将在所研究的19种癌症中的发现进行关联,以识别共性、差异及其特征。

结果

利用19种癌症的体细胞突变和基因表达信息,我们为每种癌症生成了突变-表达网络。经评估,我们发现所生成的网络显著富集了已知的癌症相关基因,如皮肤黑色素瘤(使用癌症基因网络4.0时p<0.01)。我们的框架确定,虽然不同癌症包含常见的突变基因,但癌症之间相关基因表达变化的一致性很小。癌症之间的比较表明,与总体非沉默突变负荷较低的癌症相比,总体非沉默突变负荷较高的癌症的网络节点重叠更大。

结论

本研究提供了一个通过体细胞突变和基因表达谱的联合分析来探索网络信息的框架。我们对该方法的泛癌症应用表明,虽然突变在癌症类型中经常很常见,但它们通过基因表达变化对周围网络的影响各不相同。尽管有这一发现,但有些癌症的突变相关网络行为似乎相似:这表明可能存在一个潜在框架,用于揭示可能适用类似治疗策略的相关癌症。我们用于理解癌症之间关系的框架已集成到一个交互式R Shiny应用程序——泛癌症突变表达网络(PACMEN)中,该应用程序包含突变-表达网络的动态和静态网络可视化。PACMEN还具有用于进一步检查癌症之间网络拓扑特征的工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验