Suppr超能文献

Netpredictor:用于进行药物-靶标网络分析和预测缺失链接的 R 和 Shiny 包。

Netpredictor: R and Shiny package to perform drug-target network analysis and prediction of missing links.

机构信息

School of Informatics and Computing, Indiana University Bloomington, Informatics West, Bloomington, 47408, Indiana, USA.

出版信息

BMC Bioinformatics. 2018 Jul 16;19(1):265. doi: 10.1186/s12859-018-2254-7.

Abstract

BACKGROUND

Netpredictor is an R package for prediction of missing links in any given unipartite or bipartite network. The package provides utilities to compute missing links in a bipartite and well as unipartite networks using Random Walk with Restart and Network inference algorithm and a combination of both. The package also allows computation of Bipartite network properties, visualization of communities for two different sets of nodes, and calculation of significant interactions between two sets of nodes using permutation based testing. The application can also be used to search for top-K shortest paths between interactome and use enrichment analysis for disease, pathway and ontology. The R standalone package (including detailed introductory vignettes) and associated R Shiny web application is available under the GPL-2 Open Source license and is freely available to download.

RESULTS

We compared different algorithms performance in different small datasets and found random walk supersedes rest of the algorithms. The package is developed to perform network based prediction of unipartite and bipartite networks and use the results to understand the functionality of proteins in an interactome using enrichment analysis.

CONCLUSION

The rapid application development envrionment like shiny, helps non programmers to develop fast rich visualization apps and we beleieve it would continue to grow in future with further enhancements. We plan to update our algorithms in the package in near future and help scientist to analyse data in a much streamlined fashion.

摘要

背景

Netpredictor 是一个用于预测任意给定的单部件或双部件网络中缺失链接的 R 包。该包提供了使用重新启动随机游走和网络推断算法以及两者组合来计算双部件和单部件网络中缺失链接的实用程序。该包还允许计算双部件网络属性、可视化两个不同节点集的社区,以及使用基于排列的测试计算两个节点集之间的显著相互作用。该应用程序还可用于搜索互作组之间的 top-K 最短路径,并使用富集分析进行疾病、途径和本体分析。R 独立软件包(包括详细的入门简介)和相关的 R Shiny 网络应用程序根据 GPL-2 开源许可证提供,并可免费下载。

结果

我们比较了不同算法在不同小数据集上的性能,发现随机游走优于其他算法。该包用于执行单部件和双部件网络的基于网络的预测,并使用结果通过富集分析来理解互作组中蛋白质的功能。

结论

像 shiny 这样的快速应用程序开发环境,帮助非程序员快速开发丰富的可视化应用程序,我们相信它将随着未来的进一步增强而继续增长。我们计划在不久的将来更新我们的软件包中的算法,并帮助科学家以更精简的方式分析数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9719/6047136/531295c8888d/12859_2018_2254_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验